Uncertain estimation-based motion-planning algorithms for mobile robots

Zoltán Bálint Gyenes, Emese Gincsainé Szádeczky-Kardoss

Abstract


Collision-free motion planning for mobile agents is a challenging task, especially when the robot has to move towards a target position in a dynamic environment. The main aim of this paper is to introduce motion-planning algorithms using the changing uncertainties of the sensor-based data of obstacles. Two main algorithms are presented in this work. The first is based on the well-known velocity obstacle motion-planning method. In this method, collision-free motion must be achieved by the algorithm using a cost-function-based optimisation method. The second algorithm is an extension of the often-used artificial potential field. For this study, it is assumed that some of the obstacle data (e.g. the positions of static obstacles) are already known at the beginning of the algorithm (e.g. from a map of the enviroment), but other information (e.g. the velocity vectors of moving obstacles) must be measured using sensors. The algorithms are tested in simulations and compared in different situations.

Full Text:

PDF


DOI: http://dx.doi.org/10.21014/acta_imeko.v10i3.1035