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ABSTRACT
CollisionThe collision-free motion planning for mobile agents is a challenging task, especially when even if the robot has to move towards a targetexecute its motion to the goal position in a dynamic environment. The main aimgoal of this paper is to introduce motion- planning algorithms using the changing uncertainties of the sensor-based data of the obstacles. Two main algorithms are presented in this work. The first is based on the well-known velocity obstacleVelocity Obstacles (VO) motion- planning method. In this method, that case, the collision-free motion must be achievedensured by the algorithm using a cost- function-based optimisationoptimization method. The second algorithm is an extension of the often-used artificial potential field. For this study, it is assumed that Artificial Potential Field (APF method). As an assumption, some of the obstacle data of the obstacles (e.g. the., positions of the static obstacles) are already known at the beginning of the algorithm (e.g. from., using a map ofabout the enviroment), butenvironmet), and the other information (e.g. the., velocity vectors of moving obstacles) must be measured using the sensors. The algorithms are tested in simulations and , and the presented algorithms are also compared in different situations.
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Introduction
Autonomous driving is a highly frequented research area for both mobile robots, cars, and drones. Robots haveThe robot has to generate aits collision-free motion towardsto the targetgoal position while maintaining with keeping the safety with respect to of the obstacles that occur in the local environment. Motion-The motion planning methods generate both the velocity and the path profiles for the robot using the measured information about the velocity vectors and the positions of the obstacles.	Comment by Proofed: Is this what you mean here? Please check.

Motion-The motion planning algorithms can be divided into two parts. If all the data for the robot’s environment are known and available from the environment of the robot at the start, then global motion- planning algorithms can be used to generate a for generating the collision-free path [1], [2]. HoweverOtherwise, if the robot can use only usethe local sensor-based information about itsthe surrounding complex anddense, dynamic environment, then reactive motion- planning algorithms can provide anbe acceptable solution opportunities for generating the robot’s path and velocityvelocities of the robot [3], [4].	Comment by Proofed: Is this what you mean here? Please check.

Using athe reactive motion- planning algorithm, generating it is an NP-hard problem to generate optimal evasive manoeuversmaneuvers that can ensure a safe motion for the agent and the environment is an NP-hard problem [5]. The task is more difficult if the uncertainties of the measured data (velocity vectors and positions) are taken into account.consideration. In this paper, a novel reactive motion- planning algorithm is presented that can calculate the uncertainties offor every obstacle using their velocity vectors and distancedistances from the agent.
The paper is ordered in the following way.: Section 2 outlinesshows some often- used reactive motion- planning methods that have beenwere introduced in recentthe previous decades. In some algorithms, the uncertainties of the measured data havewere also been considered. At the end of Section 2, the basics of the velocity obstacleVelocity Obstacles (VO) and artificial potential fieldArtificial Potential Field (APF) methods arewill be presented. In too. Later on, in Section 3, the novel concept forof the calculation of obstaclethe uncertainties is set out.of the obstacles will be shown. Then, in Section 4 then presents, the introduced motion- planning algorithms, which will be presented that can generate a safety motion for the agent taking into accountconsidering the uncertainties. In Section 5, the simulation results arewill be presented, and the introduced motion- planning methods arewill also be compared. In Section 6, the CoppeliaSim simulation environment is discussed, andwill be presented. In Section 7 provides, a conclusion and sets out plans forwill be given with the future researchplan opportunities.
[bookmark: _Ref60923109]Previous work
In this section, a few reactive motion- planning algorithms are presented.
The inevitable collision statesInevitable Collision States method (ICS) calculates all states of the robot where there is no available control command that would result in a collision-free motion between the robot and the environment. The main goal is to ensureprovide that the agent never finds itself in an ICS situation. The algorithm is appropriate not only forin static but also forin dynamic environments [6]-[8], [7], [8].
The main concept behindof the dynamic windowDynamic Window method [9], [10] is that the agent selects athe velocity vector from the reachable and admissible set of the velocity space. The robot executeswill execute a collision-free motion by selecting a velocity vector from the admissible velocity set. AtNext to this, the same time, reachable velocities can be generated using the kinematic and dynamic constraints of the agent.
The admissible gap Admissible Gap (AG) is a relatively new concept forof motion- planning algorithms [11]. If the robot can move through the gap safelyin a safe way using motion control, then it is admissible, obeying the constraints of the agent. This method is also usable in anthe unknown environment too. The gap-based online motion- planning algorithm haswas also been used with a Lidar sensor by introducing a binary sensing vector (the value of the vector element is equal to 1 if there is an obstacle in that direction) [12].	Comment by Proofed: I have removed the abbreviation here because it isn't used again in this paper.

Velocity obstacleObstacles method
The main concept behindof our method is based on the VOVelocity Obstacles method (VO) [13]. Using the positions and the velocities of the obstacles and the agent, the VO method generates a collision-free motion for the robot. The VO concept has been used inThere are different methods where the concept of the VO method was used.	Comment by Proofed: This abbreviation has already been introduced.

[image: C:\Users\User\AppData\Local\Microsoft\Windows\INetCache\Content.Word\VO1.png]
[bookmark: _Ref316057347]Figure 1. Velocity obstacleObstacles method
TheNow, the steps inof the VO method are as followspresented:  denotesmeans the different obstacles ( where  represents the number of obstacles),) and the agent is . For every obstacle, a  cone can be generated as a cone that constitutesconsists every robot velocity vector of the robot that would result in a collision between the agent () and the obstacle () atin a future time:
	,	Comment by Proofed: I have added punctuation here in line with the journal's style guide. Equations are considered to be part of the sentence and should therefore be punctuated appropriately. 

	(1)


where  and  are the positions and  and  are the velocity vectors of the robot and the obstacle. The As an assumption, the velocities of the obstacles and the robot are assumed to be constant until .
If there are more obstacles, then the whole  set can be generated: 
	.
	(2)


Figure 1 providesshows an example in whichwhere a moving obstacle is in position  and it has velocity  at the actual time step. There is also a static obstacle in the workspace of the agent ( represents its position). The two VO areas are depicted inwith blue color.
[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2021_IMEKO\Paper\pictures\Steps.png]
[bookmark: _Ref61628189]Figure 2. Steps of the whole VO algorithm	Comment by Proofed: I suggest changing 'goal position' to 'target position'. 

The Reachable velocitiesVelocities (RV) can be defined as the velocity area that constitutesconsists every  velocity of the agent that is reachable considering the previously selected velocity vector and the motion capabilities of the robot. The Reachable avoidance velocitiesAvoidance Velocities (RAV) can be received by subtractingsubtraction of the VO from the RV set.
Figure 2 represents the stepsevery step of the motion- planning algorithm. The main difference between the algorithms is the method for selecting the robot’s that how the velocity vector of the robot will be selected from the RAV set.
The  is an extended version of the reciprocal velocity obstacle (RVO)Reciprocal Velocity Obstacles algorithm [14], which uses theusing kinodynamic constraints of the robot. The method generates an appropriate solution for the multi-robotmultirobot collision avoidance problem in a complexdense environment. The computational time plays an important role in this algorithm. The whole environment of the agent is divided into a grid-based map. The agent selects a collision-free velocity vector using both convex and nonconvex optimisationoptimization algorithms [15].
The probabilistic velocity obstacleProbabilistic Velocity Obstacles (PRVO) method is also an extended version of the Reciprocal Velocity Obstacles (RVO) method [14], which uses theusing probabilistic. The time- scaling method and Bayesian decomposition.  are used respectively. This method demonstratesprovided better performance in terms of traversal times than the existing bound- based methods. The algorithm was tested using simulation results [16].	Comment by Proofed: I have made some changes here to avoid repetition and improve the flow. Please check that I have retained your intended meaning. 

The collision avoidanceCollision Avoidance under bounded localisation uncertaintyBounded Localization Uncertainty (COCALU) method [17] introduced convex hull peeling, resulting in a limitation inof the localisationlocalization error. This method results in a better performance than the previously introduced multiMulti-robot collision avoidance with localisationlocalization uncertainty (CALU) method [18] with respect toin consideration of the tightness of the bound. Particle filter (PF) is used for robot localisationlocalization problems. In thisthat case, convex polygons are generated as the robot footprints. The algorithm ensuresprovides that the robot is inside of this convex polygon with a probability of . A time truncation is also used in the algorithm because it supports the velocity selection even in a crowded, complexdense environment.	Comment by Proofed: I have removed the abbreviation because it isn't used again in this paper. 
	Comment by Proofed: I have removed the abbreviation because it isn't used again in this paper. 

The directiveDirective circle (DC) method is an extended version of the VO method [19], [20]. In this algorithm, the velocity of the robot iswill be selected from DC, whichthat is calculateddrawn using the maximum velocity of the agent for the radius of the DC. Ensuring the kinematic constraints of the agent, the best solution is selected from the DC that is in the optimal direction forto the target position. Using the DC method, the local minima situations are preserved.	Comment by Proofed: Is this what you mean here? Please check. 

All of the presented reactive motion- planning algorithms assume a complete set of perfect information onof the position and the velocity vectors of the obstacles that occur in the robot’s workspace of the robot. The main advantage of our introduced method is that the uncertainty of the measured sensor information can be taken into consideration, and the novel motion- planning algorithm can generate collision-free target reaching for the agent even when the data isin case of inaccurate data.
Artificial potential field (APF) method
The APFArtificial Potential Field (APF) method is an often- used reactive motion- planning algorithm. The main concept is to calculate the summation of the attractive (between the robot and the targetgoal) and repelling (between the agent and the obstacles ) forces [21], [22]. One weakness of thisthe algorithm is that sometimes only the local optimum can be found. The algorithm haswas also been developed for unmanned arial vehiclesUnmanned Arial Vehicles (UAV) [23], while. The human–-robot interaction was also simulated using the APF motion- planning method by using the motion characteristics of household animals [24].	Comment by Proofed: This abbreviation has already been introduced.

TheNow the steps of the APF method are as follows:will be presented.
During the motion planning, in every sampling time step, Ar force will influence the motion of the agent. The Ar force depends on the repelling () and the attractive (Frc) forces.
The closer the robot is to the obstacle, the largerbigger is the volume of the repelling force. The repelling force can be calculated by:
	
	(3)


where  denotesmeans the distance between the robot and the obstacle,  ismeans the vector between the obstacle and the agent,  is a specific parameter that identifiesshows the role of the repelling force induring the motion- planning algorithm, and is the largestbiggest distance that should be considered induring the motion- planning algorithm, which that can be calculated as:
	,
	(4)


where  is the maximum velocity of the robot, and  denotesmeans the sampling time.
The attractive force can be calculated as:
	,
	(5)


where  is the vector between the robot and the targetgoal, and  is the parameter of the attractive force (depending onit depends of the usage of the algorithm).
The force that influences the motion of the robot can be calculated (if there is one obstacle in the workspace) with the sum of the repelling and the attractive forces: 
	
	(6)


[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2021_IMEKO\Paper\pictures\APF1_1.PNG]
[bookmark: _Ref60953464][bookmark: _Ref60926492]Figure 3. APF method.	Comment by Proofed: I suggest changing 'goal' to 'target'.

Figure 3 illustratesshows the different forces that were presented. There is one obstacle in the workspace (B1) with the position . The agent is at the  position at this pointthe moment, and the summation of the forces can be checked.
If the mass of the agent is known, then the acceleration can be calculated using Newton’s second lawthe II. Law of Newton:
	,
	(7)


where m is the mass of the robot.
The changes in the velocity vector can be calculated if the force and the sampling time are known:
	.
	(8)


So the actual velocity can be calculated using the previous velocity and the change inof the velocity:
	.
	(9)


[bookmark: _Ref60923877]Uncerainty calculation using measurement data
In our previous studieswork, all the uncertainties of the obstacles were constant throughoutduring the whole algorithm [25]. In the present study,Now they will be adjustedchanged using the changes inof the velocity vectors of the obstacles, the actual distances of the obstacles from the robot, and the magnitudes of the obstacles’ velocity vectors of the obstacles.
The uncertainties can be calculated from the probabilities of the previously introduced parameters. The main concept behindof this method is that the measured information has lower reliability if the obstacles are far from the robot. First, let generate the obstacle distance is generatedpart:
	,
	(10)


where  is the uncertainty time parameter,  is the distance-based probability term and,  is the actual distance between the robot and the obstacle .
The magnitude of the velocity vector of the obstacle also plays a significant role in the generating of the uncertainties; the. The higher the velocity of the obstacle is, the smaller the reliability of the available information onof the obstacle is available:
	,
	(11)


where  refers tomeans the actual magnitude of the velocity of the obstacle  ( ismeans the secondary norm (Euclidean distance)) and  is the velocity- based probability term.
The change inof the obstacle’s velocity vector of the obstacle also influences the volume of the uncertainties. The changes in the velocity of the obstacle can be calculated for eachevery obstacle:
	,
	(12)


where  is the actual velocity of the obstacle, and  is the previous velocity of the obstacle, and  denotesmeans the change inof the obstacle’s velocity: of the obstacle.
	,
	(13)


where  is the probability term depending on the change inof the velocity vector of the obstacle.
The probability for obstacle  can be generated as:
	.
	(14)


The uncertainty parameter can be calculated from the calculated probability:
	,
	(15)


where this  uncertainty parameter must be calculated for every obstacle (, if there are  obstacles in the environment;, if , then there is no measurement uncertainty).
[bookmark: _Ref60923447]Velocity selection based on motion- planning algorithms
Precheck algorithm
The agent has to considertake into consideration only those obstacles that fulfil the precheck algorithm during the motion- planning algorithm that fulfil the Precheck algorithm. Two obstacle situations are cases of the obstacles will not be used:
• those obstacles that will cross the pathpaths of the agent in the distantfar future,.
• those obstacles that are athave a considerablehigh distance from the agent. 

For all obstacles, the minimum distance and time must be calculated for the point at whichwhen the agent and the obstacle are at the closest point to each other during their motion:.
	
	(16)


where  presents the time interval for the point at whichwhen the agent and the obstacle arewill be closest to each other. The nearest point iswas in the past if the value of this parameter is negative.
The minimal distance can be calculated as follows:
	
	(17)


So, only those obstacles that fulfill the following inequalities must be considered that fulfill the next inequvalities:
	,
	(18)


where  denotesmeans the maximum velocity of the agent and  is a parameter of the algorithm that must be tuned. TheOur experiments in this study demonstrateshowed that if the value of the  parameter is too small, the generated path is not smooth enough.

[bookmark: _Ref60964436]Figure 4. Precheck algorithm
The precheck algorithm is illustrated in Figure 4. When thereThere is a moving obstacleobstacles in the robot’s workspace of the robot, the minimal distance and time pointmoment can be calculated when the obstacle and the agent arewill be closest to each other.
Cost- function- based velocity selection using the extended VO method
The safety velocity obstacleSafety Velocity Obstacles (SVO) method has beenwas defined in aour previous studywork [26]. In this method, a cost function was used whenwhere different aspects influenced the motion- planning method (safety, speed). This algorithm is extended with a heading parameter, which provides that gives information onabout the orientation of the agent in relation to the targetgoal position, and the method is also extended with the changing uncertainty parameter.
AtIn every time -step, the nearest distance is calculated between the VO cone and the investigated velocities:
	,
	(19)


where  is the maximum distance that should be considered and  is the nearest point on the VO cone.
The  value must be normalisednormalized into the interval of [0,1]. The  can then be calculated, which that will be used in the cost function later:
	.
	(20)


 will be also forma part of the cost function:
	,
	(21)


where  is the sampling time,  is the first position of the robot at the beginning of the motion and  is the position of the target.goal,  denotes how far the robot will be from the targetgoal if it useswill use the selected velocity; subsequently, after that, it has to be divided by the distance of the first position and the desired position.
In this novel algorithm, the prior method is extended by using changing  parameters (they are calculated atin every time step) for the different obstacles with respect toin consideration of the reliability of the obstacles’ velocity and position information of the obstacles.
The orientation of the agent can also play a role in the cost function. The heading parameter of the cost function can be calculated as follows:
	,
	(22)


where  refers tomeans the angle of the vector from the robot position to the targetgoal position and  denoteshas a meaning of the angle of the investigated velocity vector of the agent. Using the difference inof these angles, the heading parameter can be calculated (angles are defined in the global coordinate system).
The whole cost function can be determined using different parameters:
	
	(23)


where  is the distance parameter,  is the heading parameter, and  denotes the actualactually calculated uncertainty parameter of an obstacle.
ThisThat velocity vector iswill be selected for the agent, which has minimal cost value. The different parameters of the cost function have a significant impact on the velocity selection, as will be presented in Section 5. 
[bookmark: _Ref61567674]Velocity selection based on the extended APF method
The APF method can be extended using the parameter of  and  parameters, whichthat were introduced in (15) and in (23). The repelling forces must be calculated for every obstacle. The constant  parameter must be substituted with the changing uncertainty parameter, which that has a value for every obstacle:.
	,
	(24)
	


where the notations are the same (with the extension of the i parameter, which refers to that means the i-th obstacle) as they were introduced in (3).
The attractive force, , can be calculated in the same way as in (5) by using the  parameter instead of :.
	.
	(25)


The final force that influenceswill influence the movement of the agent can be calculated as the addition of the attractive force and the summation of the repellingrepulsive forces, as it was presented in (6). After calculating the force that influences the actual movement of the agent actually, the selectable velocity vector can be calculated using (7), (8)), and (9).
[bookmark: _Ref60924157]Simulation results
In this section, thesome simulation results are discussed based on will be shown using the changing uncertainties.
[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2020ISMCR\Article\example1_velsel.PNG]
[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2020ISMCR\Article\example1_velsel.PNG]
[bookmark: _Ref79414399]Figure 5. First example: Velocity selection based on the extended VO method.	Comment by Proofed: I suggest changing 'goal' to 'target'.

[bookmark: _Ref61645668]Two static obstacles
In the first example, there are two static obstacles in the workspace of the agent. InitiallyIn the first case, using the introduced cost- function- based VOVelocity Obstacles method, the velocity vector will be selected that is exactly in the middle of the two obstacles is selected because the two obstacles have the same uncertainties. This situation is presented in Figure 5, in whichwhere the VOs are presented aswith the grey areas, the blue circle ismeans the selected velocity vector, the targetgoal is depicted by a black x, each of the agent’sred x-s represent every velocity vectors identified throughvector of the agent that is investigated during the motion- planning algorithm is represented by a red x , and the robot is the red circle.	Comment by Proofed: I have made some changes here to clarify the language. Please check that I have retained your intended meaning. 

The changes and the magnitude of the velocities of the obstacles do not influence the calculation of the uncertainties because there are two static obstacles in the workspace. So, in thisthat case, only the distances between the obstacles and the agent have an impact on the calculation. The velocity vector between the two obstacles iswill be selected, and the distances between the agent and the two obstacles arewill be the same during the motion, resulting in the same uncertainties for both obstacles, as it is presented in Figure 6 (at eachin every time -step, the uncertainties for the obstacles can be seen next to each other).
 [image: C:\Users\User\OneDrive - Budapesti Műszaki és Gazdaságtudományi Egyetem\Asztal\Egyetem\Conferences_Journals\12_2021_Akta_IMEKO_Q4\Paper\pictures\VO_Test_cases\PAPER_Test_cases\2static_obstacles_parallel\uncertainties_bar_changed.png]
[bookmark: _Ref61566324]Figure 6. First example: Twotwo static obstacles; changing uncertainties during the motion. The; the uncertainties are the same for bothat the two obstacles.	Comment by Proofed: Please change the heading to 'Changes in the uncertainties'. 

[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2021_IMEKO\Paper\pictures\example1_Original_APF_back.PNG]
[bookmark: _Ref61567033]Figure 7. First example: Original APF method
This example was also tested using both the original APF method and the extended APF method.
Using the original APF method that was introduced in Section 2, the agent cannot reach the targetgoal position. This is because at the beginning of the motion, the APF methodmethods results in a velocity vector that causeswill result a motion in the opposite direction from the targetgoal position, as it can be seen in Figure 7 (the values of the constant parameters were = 2 and = =0.1).  and  represent the repellingrepulsive forces for the different obstacles, and  is the summation of the repellingrepulsive forces (, the other notations are the same as thoseit was introduced in the previous sections). Eventually. After a while, the summation of the forces will becomebe a force in the direction of the targetgoal position. TheIn that case, the agent will then move towardsto the target position. This sequence is repeated, resulting in an oscillation without reaching the targetgoal position.
[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2021_IMEKO\Paper\pictures\example1_Extended_APF.PNG]
[bookmark: _Ref61640411]Figure 8. First example: Extended APF method
The example was also tested with the extended APF method, that was introduced in Section 4.3. In thisthat case, the reactive motion- planning method can generate a collision-free motion towardsto the target position. The different forces and the selected velocity vector can be seen in Figure 8. Using this methodIn that case, the obstacles’ uncertainties changeof the obstacles are changing in the same way as it was seen in Figure 6 because the agent executesexecuted its motion along the same path between the two obstacles.
[image: C:\Users\User\AppData\Local\Microsoft\Windows\INetCache\Content.Word\example2_velsel.png]
[bookmark: _Ref61570382]Figure 9. Second example: Velocity selection based on the extended VO method.	Comment by Proofed: I suggest changing 'goal' to 'target'. 

One moving and one static obstacle
In this example, the first obstacle is a moving obstacle, and the second obstacle is a static obstacle. If the distance of the agent is at a considerable distance,high, then it can select athe velocity vector in the line withto the target position. After that, if it gets closer to the obstacles, it selects a velocity vector that results in a manoeuvremaneuver next to the static obstacle because the corresponding probability is higher. The results of the velocity selection, in this case, are depicted in Figure 9. The path of the robot is presented aswith a black line.
In this examplethat case, the uncertainties of the obstacles are not the same as in the previous example because, the static obstacle has a smaller uncertainty throughoutduring the whole motion, as is presented in Figure 10. It can be seendetected that in the first step, the difference between the obstacles’ uncertainties of the obstacles is not significant. ThisIt is generated because the moving obstacle has a small magnitude of velocity and the distances between the obstacles and the robot are the same at the first step.
 [image: C:\Users\User\OneDrive - Budapesti Műszaki és Gazdaságtudományi Egyetem\Asztal\Egyetem\Conferences_Journals\12_2021_Akta_IMEKO_Q4\Paper\pictures\VO_Test_cases\PAPER_Test_cases\2static_obstacles_parallel\uncertainties_bar_changed.png][image: C:\Users\User\OneDrive - Budapesti Műszaki és Gazdaságtudományi Egyetem\Asztal\Egyetem\Conferences_Journals\12_2021_Akta_IMEKO_Q4\Paper\pictures\Test_cases\uncertanties_bar_changed.png]

Figure 11. Second example: Velocity selection based on the extended APF method.
[image: C:\Users\User\OneDrive - Budapesti Műszaki és Gazdaságtudományi Egyetem\Asztal\Egyetem\Conferences_Journals\12_2021_Akta_IMEKO_Q4\Paper\pictures\Test_cases\uncertanties_bar_changed.png]

[bookmark: _Ref61570525]Figure 10. Second example: Oneone moving (first) and one static (second)   obstacle; changing uncertainties during the motion using the, extended VO method. The; the moving obstacle has a higher uncertainty parameter.	Comment by Proofed: Please change the heading to 'Changes in the uncertainties'. 


[bookmark: _Ref61571025]Figure 11. Second example: Velocity selection based on extended APF method
This example was also simulated with the extended APF method. Because the first obstacle has a nonzero velocity vector, this obstacle haswill have a higher uncertainty when usingduring the motion- planning algorithm. However,, but because the magnitude of the velocity vector is not a largebig value compared within consideration of the summation of the forces, the agent executeswill execute its motion almost directly almost in a line withto the targetgoal position, as it is presented in Figure 11. So, in thisthat case, there is a difference between the result of the extended VO method and that of the extended APF method, but both of them can result in a collision-free motion between the agent and the environment, and using both of the methods, the agent can reach the targetgoal position. The uncertainties of the obstacles can also be calculated during the motion of the agent withat the extended APF method, although too. In that case, the result will be slightly different from the result of the extended VO method.
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[bookmark: _Ref61574142]Figure 12. Second example: Oneone moving (first) and one static (second) obstacle; changing uncertainties during the motion using the, extended APF method. The; the moving obstacle has a higher uncertainty parameter.	Comment by Proofed: Please change the heading to 'Changes in the uncertainties'. 

Three obstacles in front of each other
In the next example, there are three obstacles in front of each other with different velocities (the first obstacle is static, and the others are moving). Figure 13 shows the velocity selection of the VO method next to the first obstacle, and Figure 14 presents the velocity selection next to the second obstacle. It can be seen that a further velocity component iswill be selected at the second obstacle, because it has a higher velocity.
[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2021_IMEKO\Paper\pictures\example3_velsel_1.PNG]
[bookmark: _Ref61572688]Figure 13. Third example: Velocity selection at the first obstacle using the extended VO method.	Comment by Proofed: I suggest changing 'goal' to 'target'.

The higher the velocity of the obstacle is, the bigger the uncertainty is for the obstacle, as it is depicted in Figure 15, in which where the uncertainty parameters are presented as aspectsat the aspect of the three obstacles. After passing the obstacle, the uncertainty iswill be reduced. This figure showsIt can be checked that not all the obstacles need tomust be considered throughoutduring the entire motion, only. Only those thatwill influence the motion of the robot and which have fulfilledthat fulfil the precheck algorithm at the time of sampling. time.	Comment by Proofed: This sentence was a little unclear. I have made some changes, but please check that I have retained your intended meaning. 

The  parameter plays a significant role in the cost- function-based velocity selection as a factor in, at the target-aspect of the goal reaching strategy. In the previous examples, the value of  was 0.3. If this parameter has a higher value, it has a largerbigger impact on the motion than the uncertainties of the obstacles, as presented in Figure 16. In thisthat case (= =0.6), the agent executes the motion as close to the obstacle as the collision-free motion- planning algorithm allows it.
TheSo the values of the parameters depend on the usage of the algorithm; different parameter. Different values of parameters generate different results usingin the collision-free motion- planning algorithm. However,But it is not possiblehas to find take into consideration that there will never be a solution that takes into account every aspect of can solve the motion- planning problem. considering every aspect. A sub-optimal solution must therefore always be calculated.
[image: C:\Users\User\Desktop\Egyetem\Conferences_Journals\2021_IMEKO\Paper\pictures\example3_velsel_2.PNG]
[bookmark: _Ref61572713]Figure 14. Third example: Velocity selection at the second obstacle using the extended VO method.	Comment by Proofed: I suggest changing 'goal' to 'target'.
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[bookmark: _Ref61573067]Figure 15. Third example: Threethree obstacles in front of each other with different velocities; changing uncertainties during the motion using the, extended VO method.	Comment by Proofed: Please change the heading to 'Changes in the uncertainties'. 

This example can also be tested using the extended APF method. Only the first obstacle shouldmust be considered forat the motion- planning algorithm, because (18) is the appropriate equationright for the first obstacle (the second and third obstacles are at a distancefar from the agent). In thisthat case, the algorithm selectswill select a velocity vector for the agent that results inwill result a movement exactly in the exact direction of the first obstacle (because the summation of the forces is in the line withof the movement of the agent). So, after a few steps, the agent reacheswill reach and collidescollide with the first obstacle. In this examplethat case, the extended APF method cannot guarantee that the robot will reach the target a collision -free target reaching for the robot.	Comment by Proofed: Is this what you mean here? Please check. 

Standard VO method and the novel motion- planning method
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[bookmark: _Ref79243795]Figure 16. The resulting motionresulted paths of the motion of the robot with different heading parameters;, in the first example = =0.3, in the second example = =0.6.
The introduced novel motion- planning algorithm was also compared with the original VO method because the basic concept of the motion- planning algorithm is based on this algorithm.
[image: C:\Users\User\OneDrive - Budapesti Műszaki és Gazdaságtudományi Egyetem\Asztal\Egyetem\Conferences_Journals\12_2021_Akta_IMEKO_Q4\Last_example\Path_final.PNG]
[bookmark: _Ref79414935]Figure 17. Final paths of the robot using the normal VO method and the novel motion- planning algorithm	Comment by Proofed: I suggest changing 'goal' to 'target', and 'motion planning' should be hyphenated, i.e. 'motion-planning method'. 

The comparison used the example of There are two moving obstacles in the robot’s workspace.  of the robot. One of them has a changing velocity vector thatwhich results in a higher uncertainty in the motion of the robot. Figure 17 shows the final path of the robot using the different motion- planning algorithms. It can be seen that usingat the standard VO method, which providesbecause of the fastest target- reaching concept, the agent executes a tangential motion next to the first obstacle (thisit is also presented in a video too [27]). HoweverOn the other hand, if the uncertainties inof the measurementmeasurements data are also considered, the target- reaching method will be solved, generating a path that is relatively far from the first obstacle (withthat has changing velocities). The motion of the robot is alsowas presented in a video too [28]. Figure 18 represents the distances between the agent and the obstacles using the different motion- planning algorithms. As hasit was already been mentioned, when usingat the standard VO method, there is a time point at which moment when the distance between the robot and the obstacle is zero. In the other case of, using the novel motion- planning algorithm, the uncertainties can be taken into account,consideration so the agent canwill move safely towards in a safe way to the targetgoal position. However, if there is even It must be also considered that if a tiny measurement or system noise occurs in the process, then the tangential movement will immediately causebe a collision immediately. So, if this occurs, in the case if there are measurement noise or system noise in the system, then it is better to use the novel motion- planning algorithm, which generatesgenerating a collision-free motion for the agent in every situation.	Comment by Proofed: I have made some changes here to link this sentence to the previous paragraph. Please check that you are happy with this change. 

[bookmark: _Ref61577505]Coppeliasim simulation environment
The CoppeliaSim (form VREP version) is a suitable for testingsolution opportunity to test robotic arms as well as, holonomic, and non-holonomic mobile robots using reactive motion- planning algorithms. Different types of obstacles can occur in the workspace of the robot, and there are a wide range of obstacles that can be used in the simulation environment
The results of the introduced methods were tested in the CoppeliaSim simulation environment, too as it is presented in [29].
The agent is an omnidirectional robot (blue colored). This type of mobile robotrobots is often used because it can execute its motion in any direction from an actual position. In the following example that can be seen in Figure 19, there are two static obstacles (grey colored cylinders) in the workspace of the agent. The main goal of the robot is to reach the targetgoal position without collidingany collision with the two obstacles, as it was presented in Section 5.1.
[bookmark: _Ref61577547]Conclusions
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[bookmark: _Ref78241332]Figure 18. Distances between the robot and the obstacles using the different motion- planning algorithms.
In this paper, novel motion- planning methods were introduced, using the basics of the VOVelocity Obstacles and the APFArtificial Potential Field methods. The mobile robot was able tocan execute collision-free motion planning after calculating the calculation of the changing uncertainties of the obstacles. TheseThe uncertainties depend on the magnitudes of the velocity vectors of the obstacles, the distances between the obstacles and the robot, and the changes inof the obstacles’ velocities of the obstacles.
The VO-based method can generate the collision-free motion using a cost- function-based optimisationoptimization method.
The basic APF method was also extended by using the uncertainty and distance parameters in the algorithm. The extended APF method can generate a better solution than the original APF method, but there are some situations in whichwhere it cannot provide a target- reaching solution. In thesethose cases, the cost- function-based VO method was able tocan guarantee that the target was reachedreaching. The parameters for the APF method could also be calculated in another way, thus too, solving the local minima problem [30], [31].
The introduced algorithm could be implemented in ported to a real robotic system using an omnidirectional mobile robot. The state estimation of the obstacles that occur in the workspace of the robot could be solved using an extended particleParticle filter algorithm. In thisthat case, the position and the velocity vectors of the obstacles could be estimated forin every sampling time [32]. To achieve thisFor that task, a LidarLiDAR sensor can be used.	Comment by Proofed: Is this what you mean here? Please check. 
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[bookmark: _Ref79244173]Figure 19. CoppeliaSim simulation environment [29]
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