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Abstract—The motion planning for mobile robots is a challeng-
ing task even if the agent has to reach the target position in a
dense, dynamic environment. In this paper, our goal is to develop
a motion planning algorithm using the changing uncertainties
of the sensor-based data of the obstacles. The collision-free
motion must be ensured by the algorithm using a cost function
optimization method. As an assumption, some of the data of the
obstacles (e.g. positions of the static obstacles) are already known
at the beginning of the planning, and the other information (e.g.
velocity vectors of moving obstacles) must be measured using the
sensors. The algorithm is tested in simulations.

Index Terms—motion planning, mobile robots, cost function,
uncertain estimations

I. INTRODUCTION

The autonomous driving is a common research area not only
for cars but also for mobile robots. The agent has to execute
its motion to the target position without a collision with any
of the obstacles that occur in the workspace of the robot.

The motion planning algorithms generate both the path and
velocity profiles for the agent using the measured information
about the positions and velocity vectors of the obstacles.

The motion planning algorithms can be separated into two
parts. If all data are available from the obstacles at the begin-
ning, then global motion planning algorithms can be used for
generating the appropriate path [1], [2]. On the other hand, if
the robot can use only the local sensor-based information about
the surrounding dense, dynamic environment, then reactive
motion planning algorithms can be used [3], [4].

Using the reactive motion planning algorithm, it is chal-
lenging to generate evasive maneuvers that can ensure a safe
motion for the agent and its environment. The task is more
difficult, if the uncertainties of the measured data (position and
velocity vectors) are taken into consideration. In this paper,
a novel reactive motion planning method is presented that
can calculate the uncertainties for every obstacle using their
velocities and distances from the agent.

The paper has the following structure: Section II presents
some reactive motion planning algorithms focusing on the
papers in that the uncertainties of the measured data were used.
In Section III, the basics of the Velocity Obstacles method will
be presented. Later on, in Section IV, the novel concept of the
calculation of the uncertainties of the obstacles will be shown.
Then the usage of the cost function will be presented which

helps the algorithm to select the appropriate velocity vector at
every sampling time. In Section V, the simulated results will
be presented. In Section VI, the presented algorithm will be
summarized with the opportunities of further development.

II. PRIOR WORKS

In this section, few reactive motion planning algorithms are
presented.

The main concept of the Artificial Potential Field (APF)
method is that the final selected velocity vector of the robot
can be calculated with the summation of the attractive and
repelling forces. All of the obstacles generate repelling forces
and the target position has an attractive force to the robot [5],
[6]. One weakness of the algorithm is that sometimes only the
local optimum can be found.

The Inevitable Collision States method (ICS) generates
every states of the agent where there is no control command
that would cause a collision-free motion. The main concept
is to guarantee that the robot never finds itself in an ICS
situation. The algorithm is appropriate both in static and
dynamic environments [7], [8].

The εCCA is an extended version of the Reciprocal Velocity
Obstacles algorithm [9], using kinodynamic constraints of the
agent. The algorithm provides a suitable solution for the mul-
tirobot collision avoidance problem in a dense environment.
The computational time plays an essential role in this method.
The whole environment of the robot is divided into a grid-
based map. The agent selects a collision-free velocity vector
using both convex and nonconvex optimization methods [10].

The Probabilistic Velocity Obstacles (PRVO) algorithm is
also an extended version of the Reciprocal Velocity Obsta-
cles (RVO) method [9], using probabilistic. The time scaling
algorithm and Bayesian decomposition is used. This method
provided better performance in traversal times than the ex-
isting bound based methods. The algorithm was tested using
simulation results [11].

The Collision Avoidance under Bounded Localization Un-
certainty (COCALU) method [12] introduced convex hull
peeling, generating a limitation of the localization error. This
method results a better performance than the previously in-
troduced Multi-robot collision avoidance with localization
uncertainty (CALU) algorithm [13] in consideration of the



Fig. 1. Velocity Obstacles method

tightness of the bound. Particle filter is used for the robot lo-
calization problems. In that case, convex polygons are defined
as the robot footprints. The algorithm provides that the robot
is inside of this convex polygon with a probability of 1−ε. A
time truncation is also used in this method, hence it supports
the velocity selection even in a crowded environment.

III. VELOCITY OBSTACLES METHOD

The main concept of our method is based on the Velocity
Obstacles method (VO) [14].

Using the positions and the velocities of the obstacles and
the agent, the VO method generates a collision-free motion for
the robot.
Bi defines the obstacles (i = 1...m where m represents the

quantity of obstacles) and the agent is A.
For every obstacle a V Oi cone can be specified as a cone

that consists every velocity vector of the agent that would
cause a collision between the robot (A) and the obstacle (Bi)
in a future time:

V Oi = { vA | ∃ t : pA + vAt ∩ pBi + vBit 6= 0} (1)

where vA and vBi are the velocity vectors and pA and pBi are
the positions of the agent and the obstacle. As an assumption,
the velocities of the agent and the obstacles are unchanged
until t.

The whole VO can be determined if there are more obstacles
as:

V O = ∪mi=1 V Oi (2)

Figure 1 represents an example where a moving obstacle
is in position pB1 and it has velocity vB1 at the actual time.
There is a static obstacle in the workspace too (it is in the
position pB2). The two VO areas are depicted with blue color.

Fig. 2. Steps of the whole algorithm

The Reachable Velocities (RV) can be determined that
consist every vA velocity vector of the robot that is reachable
considering the actual previously selected velocity vector.
After the subtraction of the VO from the RV the Reachable
Avoidance Velocities (RAV) can be received.

Every step of the motion planning algorithm can be seen in
Figure 2. The main difference between the algorithms is that
how the velocity vector of the robot will be selected from the
RAV.

IV. COST FUNCTION BASED VELOCITY SELECTION UNDER
CHANGING UNCERTAINTIES

In this section a cost function based velocity selection
method will be presented that can consider the changing
uncertainties of the obstacles.

A. Precheck algorithm

Only those V Oi of the obstacles must be considered during
the calculation process of the RAV set that fulfill the precheck
algorithm. Two cases of the obstacles will not be considered:
• those obstacles that are far from the agent
• those obstacles that will cross the paths of the robot in

the far future.



Fig. 3. Precheck algorithm

For all obstacles, the minimum time and distance must be
calculated when the agent and the obstacle are closest to each
other during their motion.

tminA,Bi
=
−(pA − pBi)(vA − vBi)

||vA − vBi||
, (3)

where tminA,Bi
presents the time interval when the robot and

the obstacle will be nearest to each other. If the value of this
parameter is a negative number then it was in the past. ||.||
represents the secondary norm.

The minimal distance can be calculated:

dminA,Bi
= ||(pA + vAtminA,Bi

)− (pBi + vBitminA,Bi
)||, (4)

So only those obstacles must be considered that fulfill the
next equation:

0 < tminA,Bi
< 2 ∗ Tprecheck AND

dminA,Bi
< vmax ∗ Tprecheck

(5)

where vmax means the maximum velocity that the robot can
reach and Tprecheck is a parameter of the algorithm that must
be tuned. Our experiments showed that if the value of the
Tprecheck parameter is too small, it generates not a smooth
path for the agent.

The precheck algorithm is illustrated in Figure 3.

B. Calculation of changing uncertainties

In our prior work, all of the uncertainties of the obstacles
were constant during the algorithm [15]. Now they will be
changed considering the actual distances of the obstacles from
the robot, the magnitudes and the changes of the velocity
vectors of the obstacles.

The uncertainties can be calculated from the probabilities of
the previously introduced parameters. The main idea is that the
measured information has a higher reliability if the obstacles
are closer to the agent. First, let calculate the obstacle distance
part:

Pdisti =

{
1− distORi

vmax∗Tu
if distORi < vmax ∗ Tu

0 otherwise
(6)

where Pdisti means distance based probability term, distORi

is actual distance between the obstacle and the agent, and Tu
is the uncertainty time parameter.

The magnitude of the velocity of the obstacle plays also
a role in the calculation of the uncertainties. The smaller
the velocity of the obstacle is the higher reliability of the
information of the obstacle is available :

PMVi
=

{
1− ||vBi||

vmax
if ||vBi|| < vmax

0 otherwise
(7)

where PMVi
is the velocity based probability term, where

||vBi|| means the actual magnitude of the velocity of the
obstacle.

The change of the velocity of the obstacle also influences
the uncertainties. The change of the velocity of the obstacle
can be calculated:

CVi = ||vBi,new − vBi,old|| (8)

where CVi means the change of the velocity of the obstacle,
vBi,new the actual velocity of the obstacle, and vBi,old is previous
velocity of the obstacle.

PCVi =

{
1− CVi

vmax
if CVi < vmax

0 otherwise
, (9)

where PCVi is the probability term depending on the change
of the velocity of the obstacle .

The probability can be calculated:

Pi =
Pdisti + PMVi

+ PCVi

3
(10)

From the calculated probability the parameter of the uncer-
tainty can be calculated:

αi = 1− Pi, (11)

where this αi uncertainty parameter must be calculated for
every obstacle (i = 1...m, if there are m obstacles in the
workspace).

C. Cost function

In our previous work, a method was defined called Safety
Velocity Obstacles (SVO) method [16]. In this method, a cost
function was used where different parts influenced the motion
planning algorithm (speed, safety). This method was extended
with the changing uncertainty parameter and a heading pa-
rameter that provides information about the orientation of the
agent to the goal position.

In every step the nearest distance is calculated between the
investigated velocities and the V O cone:

DS(vA) = min
vV O∈V O

dist(vA, vV O), (12)



where DS(vA) means the minimal distance and vV O is the
closest point on the V O cone.
DS(vA) can be maximalized as:

DS(vA) =

{
DS(vA) if DS(vA) < Dmax

Dmax otherwise
(13)

where Dmax is a given value of the algorithm.
A normalization must be generated into the [0, 1] interval

using DS(vA). The CS(vA, V O) can be defined that will be
used in the cost function:

CS(vA, V O) = 1− DS(vA)

Dmax
(14)

CG(vA) will be also a part of the cost function

CG(vA) =
||pA + vATs − pgoal||
||pA(0)− pgoal||

(15)

where pgoal is the target position, pA(0) is the first position of
the agent from where it executed the motion. CG(vA) denoted
how far the robot will be from the goal if it will use the
selected velocity, after that, it has to be divided by the distance
of the first position and the desired position. Ts is the sampling
time.

So in the introduced method, the prior method is extended
by using changing αi(t) parameters (they are calculated in ev-
ery sampling time) for the different obstacles in consideration
of the reliability of the velocity and position information of
the obstacles.

The orientation of the robot plays also a role in the cost
function. The heading parameter of the cost function can be
calculated:

Ch(vA) =
|angleRG− angleIV (vA)|

π
, (16)

where angleRG means the angle of the vector from the robot
position to the goal position and angleIV (vA) has a meaning
of the angle of the investigated velocity vector of the agent.
The heading parameter can be calculated using the difference
of these angles.

The whole cost function can be determined using the
previously introduced parameters:

Cost(vA) =

m∑
i=1

αi(t) CS(vA, V Oi)+βd CG(vA)+βh Ch(vA)

(17)
where αi(t) means the actual calculated uncertainty parameter
of an obstacle βd is the distance parameter, and βh is the
heading parameter.

The different parameters of the cost function have a huge
impact on the velocity selection, as it will be presented in
Section V.

V. SIMULATION RESULTS

In this section some results of the simulation of the motion
planning algorithm will be presented considering the changing
uncertainties.

Fig. 4. First example: Velocity selection

Fig. 5. First example: two static obstacles; changing uncertainties during
the motion

A. Two static obstacles

In the first example, there are two static obstacles. In that
case, using the introduced cost function, the algorithm will
select a velocity vector for the robot that is exactly in the
middle of the two obstacles because the two obstacles have
the same uncertainties. This situation is presented in Figure
4, where the Velocity Obstacles are presented with the grey
areas, the robot is the red circle, blue circle means the selected
velocity vector and the goal is depicted by black x.

The magnitudes and the changes of the velocities of the
obstacles do not influence the calculation process of the
uncertainties because there are two static obstacles. So in that
case only the distances between the robot and the obstacles
has an impact on the calculation. Always the velocity vector
between the two obstacles will be selected, so the distances
between the agent and the two obstacles will be the same
during the whole motion resulting the same uncertainties for
both obstacles as it is presented in Figure 5.



Fig. 6. Second example: Velocity selection

Fig. 7. Second example: one static and one moving obstacles; changing
uncertainties during the motion

B. One static and one moving obstacles

In this example, the first obstacle is a moving obstacle and
the second obstacle is a static obstacle. If the agent is far from
the obstacles then it has the opportunity to select the velocity
in the line to the goal position. After that if it reaches the
obstacles it selects a velocity vector that results a maneuver
near to the static obstacle because its uncertainty is smaller.
The results of the velocity selection in this case is depicted in
Figure 6.

In that example, the uncertainties of the obstacles are not
the same as in the previous case, the static obstacle has a
smaller uncertainty during the whole motion as it is presented
in Figure 7. It can be detected that in the first step there is not
a huge distance between the uncertainties of the obstacles. It is
generated because the moving obstacle has a small magnitude
of the velocity and the distances between the obstacles and
the robot are the same at the first step.

Fig. 8. Third example: Velocity selection at the first obstacle

Fig. 9. Third example: Velocity selection at the second obstacle

C. Three obstacles in front of each other

In the following example, there are three obstacles in front
of each other with different velocities (the first obstacle is
a static obstacle, and the others have even higher velocity
vectors). Figure 8 represents the velocity selection at the first
obstacle and Figure 9 shows the velocity selection at the
second obstacle. It can be detected that a further velocity
vector will be selected at the second obstacle, hence it has
a higher velocity vector.

The bigger the velocity of the obstacle is, the higher the
uncertainty is for the obstacle as it is represented in Figure
10. After passing the obstacle the uncertainty will be smaller.

The βh parameter plays a significant role in the cost function
at the aspect of the target reaching strategy. If this parameter
has a bigger value, it has a higher impact on the motion than



Fig. 10. Third example: three obstacles in front of each other with different
velocities; changing uncertainties during the motion

Fig. 11. The resulted paths of the motion of the robot with different heading
parameter, in the first example βh = 0.3, in the second example βh = 0.6

the uncertainties of the obstacles, as presented in Figure 11. In
that case (βh = 0.6), the agent moves as close to the obstacles
as the collision-free motion planning algorithm allows it.

So the values of the parameters depend on the usage of
the algorithm. Different values of parameter generate different
results in the collision-free motion planning algorithm. But it
has to take into consideration that there will never be a solution
that can fulfill every aspect of the motion planning problem.
A sub-optimal solution can be generated.

VI. CONCLUSION

In this paper, a novel motion planning algorithm was
introduced, using the basics of the Velocity Obstacles method.
In this algorithm, the collision-free motion planning for the
mobile robot can be generated after the calculation of the
changing uncertainties of the obstacles. The uncertainties
depend on the distances between the robot and the obstacles,
the magnitudes of the velocity vectors of the obstacles, and
the changes of the velocities of the obstacles. The selected
velocity vector for the robot can be determined by using a
cost function method.

In the future, the calculation of the uncertainties could
be submitted by using Particle filter using the measured
and estimated values of the positions and velocities of the
obstacles. As a future plan, we would like to test this algorithm
on a real robotic system.

ACKNOWLEDGMENT

SUPPORTED BY THE ÚNKP-20-3 NEW NATIONAL
EXCELLENCE PROGRAM OF THE MINISTRY FOR IN-
NOVATION AND TECHNOLOGY FROM THE SOURCE
OF THE NATIONAL RESEARCH, DEVELOPMENT AND
INNOVATION FUND and by the EFOP-3.6.2-16-2016-00014
project - financed by the Ministry of Human Capacities of
Hungary.

REFERENCES

[1] Panov, S., Koceski, S. (2015). Metaheuristic global path planning
algorithm for mobile robots. International Journal of Reasoning-Based
Intelligent Systems, 7(1/2), 35. https://doi.org/10.1504/ijris.2015.070910

[2] Hsu, P. M., Lin, C. L., Yang, M. Y. (2014). On the complete
coverage path planning for mobile robots. Journal of Intelligent
and Robotic Systems: Theory and Applications, 74(3–4), 945–963.
https://doi.org/10.1007/s10846-013-9856-0

[3] Masehian, E., Katebi, Y. (2014). Sensor-based motion planning of
wheeled mobile robots in unknown dynamic environments. Journal of
Intelligent and Robotic Systems: Theory and Applications, 74(3–4),
893–914. https://doi.org/10.1007/s10846-013-9837-3

[4] Mohanan, M. G., Salgoankar, A. (2018). A survey of robotic motion
planning in dynamic environments. Robotics and Autonomous Systems,
100, 171–185. https://doi.org/10.1016/j.robot.2017.10.011
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