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1. INTRODUCTION 

Autonomous driving is a highly frequented research area for 
mobile robots, cars and drones. Robots have to generate a 
collision-free motion towards the target position while 
maintaining safety with respect to the obstacles that occur in the 
local environment. Motion-planning methods generate both the 
velocity and the path profiles for the robot using measured 
information about the velocity vectors and the positions of the 
obstacles. 

Motion-planning algorithms can be divided into two parts. If 
all the data for the robot’s environment are known and available 
at the start, then global motion-planning algorithms can be used 
to generate a collision-free path [1], [2]. However, if the robot 
can only use local sensor-based information about its 
surrounding dnese and dynamic environment, then reactive 
motion-planning algorithms can provide an acceptable solution 
for generating the robot’s path and velocity [3], [4]. 

Using a reactive motion-planning algorithm, generating 
optimal evasive manoeuvers that can ensure a safe motion for 
the agent and the environment is an NP-hard problem [5]. The 
task is more difficult if the uncertainties of the measured data 

(velocity vectors and positions) are taken into account. In this 
paper, a novel reactive motion-planning algorithm is presented 
that can calculate the uncertainties of every obstacle using their 
velocity vectors and distance from the agent. 

The paper is ordered in the following way. Section 2 outlines 
some often-used reactive motion-planning methods that have 
been introduced in recent decades. In some algorithms, the 
uncertainties of the measured data have also been considered. At 
the end of Section 2, the basics of the velocity obstacle (VO) and 
artificial potential field (APF) methods are presented. In Section 
3, the novel concept for the calculation of obstacle uncertainties 
is set out. Section 4 then presents the introduced motion-
planning algorithms, which can generate a safety motion for the 
agent taking into account the uncertainties. In Section 5, the 
simulation results are presented, and the introduced motion-
planning methods are compared. In Section 6, the CoppeliaSim 
simulation environment is discussed, and Section 7 provides a 
conclusion and sets out plans for future research. 

2. PREVIOUS WORK 

In this section, a few reactive motion-planning algorithms are 
presented. 

ABSTRACT 
Collision-free motion planning for mobile agents is a challenging task, especially when the robot has to move towards a target position 
in a dynamic environment. The main aim of this paper is to introduce motion-planning algorithms using the changing uncertainties of 
the sensor-based data of obstacles. Two main algorithms are presented in this work. The first is based on the well-known velocity 
obstacle motion-planning method. In this method, collision-free motion must be achieved by the algorithm using a cost-function-based 
optimisation method. The second algorithm is an extension of the often-used artificial potential field. For this study, it is assumed that 
some of the obstacle data (e.g. the positions of static obstacles) are already known at the beginning of the algorithm (e.g. from a map 
of the enviroment), but other information (e.g. the velocity vectors of moving obstacles) must be measured using sensors. The algorithms 
are tested in simulations and compared in different situations. 
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The inevitable collision states method (ICS) calculates all 
states of the robot where there is no available control command 
that would result in a collision-free motion between the robot 
and the environment. The main goal is to ensure that the agent 
never finds itself in an ICS situation. The algorithm is appropriate 
not only for static but also for dynamic environments [6]-[8]. 

The main concept behind the dynamic window method [9], 
[10] is that the agent selects a velocity vector from the reachable 
and admissible set of the velocity space. The robot executes a 
collision-free motion by selecting a velocity vector from the 
admissible velocity set. At the same time, reachable velocities can 
be generated using the kinematic and dynamic constraints of the 
agent. 

The admissible gap is a relatively new concept for motion-
planning algorithms [11]. If the robot can move through the gap 
safely using motion control, then it is admissible, obeying the 
constraints of the agent. This method is also usable in an 
unknown environment. The gap-based online motion-planning 
algorithm has also been used with a Lidar sensor by introducing 
a binary sensing vector (the value of the vector element is equal 
to 1 if there is an obstacle in that direction) [12]. 

2.1. Velocity obstacle method 

The main concept behind our method is based on the VO 
method [13]. Using the positions and the velocities of the 
obstacles and the agent, the VO method generates a collision-
free motion for the robot. The VO concept has been used in 
different methods. 

The steps in the VO method are as follows: 𝐵𝑖  denotes the 

different obstacles (𝑖 = 1. . . 𝑚, where 𝑚 represents the number 

of obstacles), and the agent is 𝐴. For every obstacle, a 𝑉𝑂𝑖 cone 
can be generated that constitutes every robot velocity vector that 

would result in a collision between the agent (𝐴) and the obstacle 

(𝐵𝑖) at a future time: 

𝑉𝑂𝑖 = { 𝐯A  | ∃ 𝑡:  𝐩A + 𝐯A𝑡 ∩  𝐩B𝑖 + 𝐯B𝑖𝑡 ≠ 0} , (1) 

where  𝐩A and 𝐩B𝑖 are the positions and 𝐯A and 𝐯B𝑖 are the 
velocity vectors of the robot and the obstacle. The velocities of 

the obstacles and the robot are assumed to be constant until 𝑡. 

If there are more obstacles, then the whole 𝑉𝑂 set can be 
generated:  

𝑉𝑂 =∪𝑖=1
𝑛     𝑉𝑂𝑖  . (2) 

Figure 1 provides an example in which a moving obstacle is 

in position 𝐩B1 and has velocity 𝐯B1 at the actual time step. There 

is also a static obstacle in the workspace of the agent (𝐩B2 
represents its position). The two VO areas are depicted in blue. 

Reachable velocities (RV) can be defined as the velocity area 

that constitutes every 𝐯A velocity of the agent that is reachable 
considering the previously selected velocity vector and the 
motion capabilities of the robot. Reachable avoidance velocities 
(RAV) can be received by subtracting the VO from the RV set. 

Figure 2 represents the steps of the motion-planning 
algorithm. The main difference between the algorithms is the 
method for selecting the robot’s velocity vector from the RAV 
set. 

The 𝜖𝐶𝐶𝐴 is an extended version of the reciprocal velocity 
obstacle (RVO) algorithm [14], which uses the kinodynamic 
constraints of the robot. The method generates an appropriate 
solution for the multi-robot collision avoidance problem in a 
complex environment. The computational time plays an 
important role in this algorithm. The whole environment of the 
agent is divided into a grid-based map. The agent selects a 
collision-free velocity vector using both convex and nonconvex 
optimisation algorithms [15]. 

 

Figure 1. Velocity obstacle method. 

 

Figure 2. Steps of the whole VO algorithm. 
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The probabilistic velocity obstacle method is also an extended 
version of the RVO method [14], which uses the time-scaling 
method and Bayesian decomposition. This method demonstrates 
better performance in terms of traversal times than the existing 
bound-based methods. The algorithm was tested using 
simulation results [16]. 

The collision avoidance under bounded localisation 
uncertainty method [17] introduced convex hull peeling, 
resulting in a limitation in the localisation error. This method 
results in a better performance than the previously introduced 
multi-robot collision avoidance with localisation uncertainty 
method [18] with respect to the tightness of the bound. Particle 
filter is used for robot localisation problems. In this case, convex 
polygons are generated as the robot footprints. The algorithm 
ensures that the robot is inside this convex polygon with a 

probability of 1 − 𝜀. A time truncation is also used in the 
algorithm because it supports the velocity selection even in a 
crowded, complex environment. 

The directive circle (DC) method is an extended version of 
the VO method [19], [20]. In this algorithm, the velocity of the 
robot is selected from DC, which is calculated using the 
maximum velocity of the agent for the radius of the DC. 
Ensuring the kinematic constraints of the agent, the best solution 
is selected from the DC in the optimal direction for the target 
position. Using the DC method, the local minima situations are 
preserved. 

All the presented reactive motion-planning algorithms 
assume a complete set of information on the position and the 
velocity vectors of the obstacles that occur in the robot’s 
workspace. The main advantage of our introduced method is that 
the uncertainty of the measured sensor information can be taken 
into consideration, and the novel motion-planning algorithm can 
generate collision-free target reaching for the agent even when 
the data is inaccurate. 

2.2. Artificial potential field method 

The APF method is an often-used reactive motion-planning 
algorithm. The main concept is to calculate the summation of the 
attractive (between the robot and the target) and repelling 
(between the agent and the obstacles ) forces [21], [22]. One 
weakness of this algorithm is that sometimes only the local 
optimum can be found. The algorithm has also been developed 
for unmanned arial vehicles [23], while human–robot interaction 
was also simulated using the APF motion-planning method by 
using the motion characteristics of household animals [24]. 

The steps of the APF method are as follows: 
During motion planning, in every sampling time step, Ar force 

will influence the motion of the agent. The Ar force depends on 

the repelling (  𝐅𝐚𝐫𝐢
) and the attractive (Frc) forces. 

The closer the robot is to the obstacle, the larger the volume 
of the repelling force. The repelling force can be calculated by 

  𝐅𝐚𝐫𝐢
=

𝜂√
1

𝐷ra𝑖
    +  

1
𝐷ramax 

   

𝐷ra𝑖
2

𝐀𝐑𝐢 , 
(3) 

where 𝐷ra𝑖
 denotes the distance between the robot and the 

obstacle, 𝐀𝐑𝐢 is the vector between the obstacle and the agent, 

𝜂 is a specific parameter that identifies the role of the repelling 

force in the motion-planning algorithm and 𝐷ramax is the largest 

distance that should be considered in the motion-planning 
algorithm, which can be calculated as 

𝐷ramax = 𝑣max 𝑇s ,  (4) 

where 𝑣max is the maximum velocity of the robot and 𝑇s denotes 
the sampling time. 

The attractive force can be calculated as 

𝐅𝐫𝐜 = 𝜉 𝐑𝐂 , (5) 

where 𝐑𝐂 is the vector between the robot and the target and 𝜉 is 
the parameter of the attractive force (depending on the usage of 
the algorithm). 

The force that influences the motion of the robot can be 
calculated (if there is one obstacle in the workspace) with the sum 
of the repelling and the attractive forces:  

𝐀𝐫 = ∑   𝐅𝐚𝐫𝑖

𝑚

𝑖=1

+ 𝐅𝐫𝐜 . (6) 

Figure 3 illustrates the different forces presented. There is one 

obstacle in the workspace (B1) with the position 𝐩B1. The agent 

is at the 𝐩A position at this point, and the summation of the 
forces can be checked. 

If the mass of the agent is known, then the acceleration can 
be calculated using Newton’s second law: 

𝐚 =
𝐀𝐫

𝑚
 , (7) 

where m is the mass of the robot. 
The changes in the velocity vector can be calculated if the 

force and the sampling time are known: 

Δ𝐯 = 𝐚 𝑇𝑠 . (8) 

So the actual velocity can be calculated using the previous 
velocity and the change in velocity: 

𝐯𝐧𝐞𝐰 = 𝐯𝐩𝐫𝐞𝐯 +  Δ𝐯 . (9) 

3. UNCERTAINTY CALCULATION USING MEASUREMENT 
DATA 

In previous studies, all the uncertainties of the obstacles were 
constant throughout the algorithm [25]. In the present study, 
they will be adjusted using the changes in the velocity vectors of 
the obstacles, the actual distances of the obstacles from the robot 
and the magnitudes of the obstacles’ velocity vectors. 

 

Figure 3. APF method. 
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The uncertainties can be calculated from the probabilities of 
the previously introduced parameters. The main concept behind 
this method is that the measured information has lower reliability 
if the obstacles are far from the robot. First, the obstacle distance 
is generated: 

𝑃dist𝑖

= {
1 −

dist𝑂𝑅𝑖

𝑣max ∙ 𝑇u

if dist𝑂𝑅𝑖
< 𝐯max ∙ 𝑇u

0 otherwise

 , 
(10) 

where 𝑇u is the uncertainty time parameter, 𝑃dist𝑖
 is the distance-

based probability term and dist𝑂𝑅𝑖
 is the actual distance between 

the robot and the obstacle 𝐵𝑖 . 
The magnitude of the velocity vector of the obstacle also plays 

a significant role in generating the uncertainties; the higher the 
velocity of the obstacle, the smaller the reliability of the available 
information on the obstacle: 

PMV𝑖
= {

1 −
||𝐯Bi||

𝑣max

𝑖𝑓 ||𝐯Bi|| < 𝑣max

0 otherwise

 , (11) 

where ||𝐯Bi|| refers to the actual magnitude of the velocity of the 

obstacle 𝐵𝑖  (||. || is the secondary norm (Euclidean distance)) and 

PMV𝑖
 is the velocity-based probability term. 

The change in the obstacle’s velocity vector also influences 
the volume of the uncertainties. The changes in the velocity of 
the obstacle can be calculated for each obstacle: 

𝐶𝑉𝑖 = ||𝐯B𝑖,new − 𝐯B𝑖,old||, (12) 

where 𝐯B𝑖,new is the actual velocity of the obstacle, 𝐯B𝑖,old is 

the previous velocity of the obstacle and 𝐶𝑉𝑖 denotes the change 
in the obstacle’s velocity: 

𝑃CV𝑖
= {

1 −
𝐶𝑉𝑖

2 𝑣max

if 𝐶𝑉𝑖 < 𝑣max

0 otherwise

 , (13) 

where 𝑃CV𝑖
 is the probability term depending on the change in 

the velocity vector of the obstacle. 

The probability for obstacle 𝐵𝑖  can be generated as 

𝑃𝑖 =
𝑃dist𝑖

+ 𝑃MV𝑖
+ 𝑃CV𝑖

3
 . (14) 

The uncertainty parameter can be calculated from the 
calculated probability: 

𝛼𝑖 = 1 − 𝑃𝑖  , (15) 

where this 𝛼𝑖 uncertainty parameter must be calculated for every 

obstacle (𝑖 = 1. . . 𝑚, if there are 𝑚 obstacles in the environment; 

if 𝛼𝑖 = 0, then there is no measurement uncertainty). 

4. VELOCITY SELECTION BASED ON MOTION-PLANNING 
ALGORITHMS 

4.1. Precheck algorithm 

The agent has to consider only those obstacles that fulfil the 
precheck algorithm during the motion-planning algorithm. Two 
obstacle situations are not used: 

• obstacles that will cross the path of the agent in the distant 
future, 

• obstacles that are at a considerable distance from the agent. 

For all obstacles, the minimum distance and time must be 
calculated for the point at which the agent and the obstacle are 
closest to each other during their motion: 

𝑡minA,B𝑖
=

−( 𝐩A − 𝐩B𝑖)(𝐯A − 𝐯B𝑖)

||𝐯A − 𝐯B𝑖||
 , (16) 

where 𝑡minA,B𝑖
 presents the time interval for the point at which 

the agent and the obstacle are closest to each other. The nearest 
point is in the past if the value of this parameter is negative. 

The minimal distance can be calculated as follows: 

𝑑minA,B𝑖
= ||( 𝐩A + 𝐯A𝑡minA,B𝑖

)

− (𝐩B𝑖 + 𝐯B𝑖𝑡minA,B𝑖
)|| . 

(17) 

So, only those obstacles that fulfill the following inequalities 
must be considered: 

0 < 𝑡minA,B𝑖
< 2 ∙ 𝑇precheck AND

    𝑑minA,B𝑖
< 𝑣max ∙ 𝑇precheck

, (18) 

where 𝑣max denotes the maximum velocity of the agent and 

𝑇precheck is a parameter of the algorithm that must be tuned. The 

experiments in this study demonstrate that if the value of the 

𝑇precheck parameter is too small, the generated path is not 

smooth enough. 
The precheck algorithm is illustrated in Figure 4. When there 

is a moving obstacle in the robot’s workspace, the minimal 
distance and time point can be calculated when the obstacle and 
the agent are closest to each other. 

4.2. Cost-function-based velocity selection using the extended VO 
method 

The safety velocity obstacle method has been defined in a 
previous study [26]. In this method, a cost function was used 
when different aspects influenced the motion-planning method 
(safety, speed). This algorithm is extended with a heading 
parameter, which provides information on the orientation of the 
agent in relation to the target position, and the method is also 
extended with the changing uncertainty parameter. 

At every time step, the nearest distance is calculated between 
the VO cone and the investigated velocities: 

 

Figure 4. Precheck algorithm. 
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𝐷S(𝐯𝐴, 𝑉𝑂𝑖) = min { 𝑚𝑖𝑛
𝒗𝑉𝑂∈𝑉𝑂

||𝒗𝐴 − 𝒗𝑉𝑂||, 𝐷𝑚𝑎𝑥},  (19) 

where 𝐷max is the maximum distance that should be considered 

and 𝐯VO is the nearest point on the VO cone. 

The 𝐷S(𝐯A) value must be normalised into the interval of 

[0,1]. The 𝐶S(𝐯A) can then be calculated, which will be used in 
the cost function later: 

𝐶S(𝐯A, 𝑉𝑂𝑖) = 1 −
𝐷S(𝐯A, 𝑉𝑂𝑖)

𝐷max

 . (20) 

𝐶G(𝐯A) will also form part of the cost function: 

𝐶G(𝐯A) =
||𝐩A + 𝐯A𝑇s − 𝐩goal||

||𝐩A(0) − 𝐩goal||
 , (21) 

where 𝑇s is the sampling time, 𝐩A(0) is the first position of the 

robot at the beginning of the motion and 𝐩goal is the position of 

the target. 𝐶G(𝐯A) denotes how far the robot will be from the 
target if it uses the selected velocity; subsequently, it has to be 
divided by the distance of the first position and the desired 
position. 

In this novel algorithm, the prior method is extended by 

changing 𝛼𝑖(𝑡) parameters (calculated at every time step) for the 
different obstacles with respect to the reliability of the obstacles’ 
velocity and position information. 

The orientation of the agent can also play a role in the cost 
function. The heading parameter of the cost function can be 
calculated as follows: 

𝐶h(𝐯A) =
|𝑎𝑛𝑔𝑙𝑒𝑅𝐺 − 𝑎𝑛𝑔𝑙𝑒𝐼𝑉(𝐯A)|

π
, (22) 

where 𝑎𝑛𝑔𝑙𝑒𝑅𝐺 refers to the angle of the vector from the robot 

position to the target position and 𝑎𝑛𝑔𝑙𝑒𝐼𝑉(𝐯A) denotes the 
angle of the investigated velocity vector of the agent. Using the 
difference in these angles, the heading parameter can be 
calculated (angles are defined in the global coordinate system). 

The whole cost function can be determined using different 
parameters: 

Cost(𝐯𝐴) = ∑

𝑚

𝑖=1

𝛼𝑖(𝑡) 𝐶S(𝐯A, 𝑉𝑂𝑖) + 𝛽d 𝐶G(𝐯A)

+ 𝛽h 𝐶h(𝐯A), 

(23) 

where 𝛽d is the distance parameter, 𝛽h is the heading parameter 

and 𝛼𝑖(𝑡) denotes the actual calculated uncertainty parameter of 
an obstacle. 

This velocity vector is selected for the agent, which has 
minimal cost value. The different parameters of the cost function 
have a significant impact on the velocity selection, as will be 
presented in Section 5.  

4.3. Velocity selection based on the extended APF method 

The APF method can be extended using 𝛼𝑖(𝑡) and 𝛽d 
parameters, which were introduced in (15) and (23). The repelling 

forces must be calculated for every obstacle. The constant η 
parameter must be substituted with the changing uncertainty 
parameter, which has a value for every obstacle: 

𝐅𝐚𝐫𝐢
=

𝛼𝑖(𝑡)√
1

𝐷ra𝑖

    +  
1

𝐷ramax 
   

𝐷ra𝑖
2

𝐀𝐑𝐢 , 
(24) 

where the notations are the same (with the extension of the i 
parameter, which refers to the i-th obstacle) as introduced in (3). 

The attractive force, 𝐅𝐫𝐜, can be calculated in the same way as 

in (5) by using the 𝛽d parameter instead of 𝜉: 

𝐅𝐫𝐜 = 𝛽d 𝐑𝐂 .  (25) 

The final force that influences the movement of the agent can 
be calculated as the addition of the attractive force and the 
summation of the repelling forces, as presented in (6). After 
calculating the force that influences the actual movement of the 
agent, the selectable velocity vector can be calculated using (7), 
(8) and (9). 

5. SIMULATION RESULTS 

In this section, the simulation results are discussed based on 
the changing uncertainties. 

5.1. Two static obstacles 

In the first example, there are two static obstacles in the 
workspace of the agent. Initially, using the introduced cost-
function-based VO method, the velocity vector that is exactly in 
the middle of the two obstacles is selected because the two 
obstacles have the same uncertainties. This situation is presented 
in Figure 5, in which the VOs are presented as grey areas, the 
blue circle is the selected velocity vector, the target is depicted by 
a black x, each of the agent’s velocity vectors identified through 
the motion-planning algorithm is represented by a red x and the 
robot is the red circle. 

The changes and the magnitude of the velocities of the 
obstacles do not influence the calculation of the uncertainties 
because there are two static obstacles in the workspace. So, in 
this case, only the distances between the obstacles and the agent 
have an impact on the calculation. The velocity vector between 
the two obstacles is selected, and the distances between the agent 
and the two obstacles are the same during the motion, resulting 
in the same uncertainties for both obstacles, as presented in 

 

Figure 5. First example: Velocity selection based on the extended VO method. 
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Figure 6 (at each time step, the uncertainties for the obstacles can 
be seen next to each other). 

This example was also tested using both the original APF 
method and the extended APF method. 

Using the original APF method that was introduced in Section 
2, the agent cannot reach the target position. This is because at 
the beginning of the motion, the APF method results in a 
velocity vector that causes a motion in the opposite direction 
from the target position, as can be seen in Figure 7 (the values of 

the constant parameters were 𝜂 = 2 and 𝜉 = 0.1). 𝐅𝐚𝐫1
 and 𝐅𝐚𝐫2

 

represent the repelling forces for the different obstacles, and 

𝐅𝐚𝐫sum
 is the summation of the repelling forces (the other 

notations are the same as those introduced in previous sections). 
Eventually, the summation of the forces will become a force in 
the direction of the target position. The agent will then move 
towards the target position. This sequence is repeated, resulting 
in an oscillation without reaching the target position. 

The example was also tested with the extended APF method, 
introduced in Section 4.3. In this case, the reactive motion-
planning method can generate a collision-free motion towards 
the target position. The different forces and the selected velocity 

vector can be seen in Figure 8. Using this method, the obstacles’ 
uncertainties change in the same way as seen in Figure 6 because 
the agent executes its motion along the same path between the 
two obstacles. 

5.2. One moving and one static obstacle 

In this example, the first obstacle is a moving obstacle, and the 
second obstacle is a static obstacle. If the agent is at a 
considerable distance, it can select a velocity vector in line with 
the target position. After that, if it gets closer to the obstacles, it 
selects a velocity vector that results in a manoeuvre next to the 
static obstacle because the corresponding probability is higher. 
The results of the velocity selection, in this case, are depicted in 
Figure 9. The path of the robot is presented as a black line. 

In this example, the uncertainties of the obstacles are not the 
same as in the previous example because the static obstacle has 
a smaller uncertainty throughout the motion, as presented in 
Figure 10. It can be seen that in the first step, the difference 
between the obstacles’ uncertainties is not significant. This is 
because the moving obstacle has a small magnitude of velocity 
and the distances between the obstacles and the robot are the 
same at the first step.  

 

 

Figure 6. First example: Two static obstacles; changing uncertainties during 
motion. The uncertainties are the same for both obstacles. 

 

Figure 7. First example: Original APF method. 

 

Figure 8. First example: Extended APF method. 

 

Figure 9. Second example: Velocity selection based on the extended VO 
method. 
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This example was also simulated with the extended APF 
method. Because the first obstacle has a nonzero velocity vector, 
this obstacle has a higher uncertainty when using the motion-
planning algorithm. However, because the magnitude of the 
velocity vector is not a large value compared with the summation 
of the forces, the agent executes its motion almost directly in line 
with the target position, as presented in Figure 11. So, in this 
case, there is a difference between the result of the extended VO 
method and that of the extended APF method, but both of them 
can result in a collision-free motion between the agent and the 
environment, and using both methods, the agent can reach the 
target position. The uncertainties of the obstacles can also be 
calculated during the motion of the agent with the extended APF 
method, although the result will be slightly different from the 
result of the extended VO method. 

5.3. Three obstacles in front of each other 

In the next example, there are three obstacles in front of each 
other with different velocities (the first obstacle is static, and the 
others are moving). Figure 13 shows the velocity selection of the 

VO method next to the first obstacle, and Figure 14 presents the 
velocity selection next to the second obstacle. It can be seen that 
a further velocity component is selected at the second obstacle 
because it has a higher velocity. 

The higher the velocity of the obstacle, the bigger the 
uncertainty for the obstacle, as depicted in Figure 15, in which 
the uncertainty parameters are presented as aspects of the three 
obstacles. After passing the obstacle, the uncertainty is reduced. 
This figure shows that not all the obstacles need to be considered 
throughout the motion, only those that influence the motion of 
the robot and which have fulfilled the precheck algorithm at the 
time of sampling. 

The 𝛽h parameter plays a significant role in the cost-function-
based velocity selection as a factor in the target-reaching strategy. 

In the previous examples, the value of 𝛽h was 0.3. If this 
parameter has a higher value, it has a larger impact on the motion 
than the uncertainties of the obstacles, as presented in Figure 16. 

In this case (𝛽h = 0.6), the agent executes the motion as close to 
the obstacle as the collision-free motion-planning algorithm 
allows. 

 

Figure 10. Second example: One moving (first) and one static (second) 
obstacle; changing uncertainties during motion using the extended VO 
method. The moving obstacle has a higher uncertainty parameter. 

 

Figure 11. Second example: Velocity selection based on the extended APF 
method. 

  

Figure 12. Second example: One moving (first) and one static (second) 
obstacle; changing uncertainties during motion using the extended APF 
method. The moving obstacle has a higher uncertainty parameter. 

 

Figure 13. Third example: Velocity selection at the first obstacle using the 
extended VO method. 
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The values of the parameters depend on the usage of the 
algorithm; different parameter values generate different results 
using the collision-free motion-planning algorithm. However, it 
is not possible to find a solution that takes into account every 
aspect of the motion-planning problem. A sub-optimal solution 
must therefore always be calculated. 

This example can also be tested using the extended APF 
method. Only the first obstacle should be considered for the 
motion-planning algorithm because (18) is the appropriate 
equation for the first obstacle (the second and third obstacles are 
at a distance from the agent). In this case, the algorithm selects a 
velocity vector for the agent that results in a movement in the 
exact direction of the first obstacle (because the summation of 
the forces is in line with the movement of the agent). So, after a 
few steps, the agent reaches and collides with the first obstacle. 
In this example, the extended APF method cannot guarantee that 
the robot will reach the target collision free. 

5.4. Standard VO method and the novel motion-planning method 

The introduced novel motion-planning algorithm was also 
compared with the original VO method because the basic 

concept of the motion-planning algorithm is based on this 
algorithm. 

The comparison used the example of two moving obstacles 
in the robot’s workspace. One of them has a changing velocity 
vector that results in a higher uncertainty in the motion of the 
robot. Figure 17 shows the final path of the robot using the 
different motion-planning algorithms. It can be seen that using 
the standard VO method, which provides the fastest target-
reaching concept, the agent executes a tangential motion next to 
the first obstacle (this is also presented in a video [27]). However, 
if the uncertainties in the measurement data are also considered, 
the target-reaching method will be solved, generating a path that 
is relatively far from the first obstacle (with changing velocities). 
The motion of the robot is also presented in a video [28]. Figure 
18 represents the distances between the agent and the obstacles 
using the different motion-planning algorithms. As has already 
been mentioned, when using the standard VO method, there is 
a time point at which the distance between the robot and the 
obstacle is zero. In the case of the novel motion-planning 
algorithm, the uncertainties can be taken into account, so the 
agent can move safely towards the target position. However, if 
there is even a tiny measurement or system noise in the process, 
the tangential movement will immediately cause a collision. So, 
if this occurs, it is better to use the novel motion-planning 
algorithm, which generates a collision-free motion for the agent 
in every situation. 

 

Figure 14. Third example: Velocity selection at the second obstacle using the 
extended VO method. 

 

Figure 15. Third example: Three obstacles in front of each other with different 
velocities; changing uncertainties during motion using the extended VO 
method. 

 

Figure 16. The resulting motion paths of the robot with different heading 
parameters; in the first example 𝜷𝐡 = 0.3, in the second example 𝜷𝐡 = 0.6. 

 

Figure 17. Final paths of the robot using the normal VO method and the novel 
motion-planning algorithm. 
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6. COPPELIASIM SIMULATION ENVIRONMENT 

CoppeliaSim (VREP version) is suitable for testing robotic 
arms as well as holonomic and non-holonomic mobile robots 
using reactive motion-planning algorithms. Different types of 
obstacles can occur in the workspace of the robot, and there are 
a wide range of obstacles that can be used in the simulation 
environment 

The results of the introduced methods were tested in the 
CoppeliaSim simulation environment, as presented in [29]. 

The agent is an omnidirectional robot (blue). This type of 
mobile robot is often used because it can execute its motion in 
any direction from an actual position. In the example in Figure 
19, there are two static obstacles (grey cylinders) in the workspace 
of the agent. The main goal of the robot is to reach the target 
position without colliding with the two obstacles, as presented in 
Section 5.1. 

7. CONCLUSIONS 

In this paper, novel motion-planning methods were 
introduced using the basics of the VO and the APF methods. 
The mobile robot was able to execute collision-free motion 
planning after calculating the changing uncertainties of the 
obstacles. These uncertainties depend on the magnitudes of the 
velocity vectors of the obstacles, the distances between the 
obstacles and the robot, and the changes in the obstacles’ 
velocities. 

The VO-based method can generate collision-free motion 
using a cost-function-based optimisation method. 

The basic APF method was also extended by using the 
uncertainty and distance parameters in the algorithm. The 
extended APF method can generate a better solution than the 
original APF method, but there are some situations in which it 
cannot provide a target-reaching solution. In these cases, the 
cost-function-based VO method was able to guarantee that the 
target was reached. The parameters for the APF method could 
also be calculated in another way, thus solving the local minima 
problem [30], [31]. 

The introduced algorithm could be implemented in a real 
robotic system using an omnidirectional mobile robot. The state 
estimation of the obstacles that occur in the workspace of the 
robot could be solved using an extended particle filter algorithm. 
In this case, the position and the velocity vectors of the obstacles 
could be estimated for every sampling time [32]. To achieve this, 
a Lidar sensor can be used. 
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