A2CM: a new multi-agent algorithm
DOI:
https://doi.org/10.21014/acta_imeko.v10i3.1023Abstract
Reinforcement learning is currently one of the most researched fields of artificial intelligence. New algorithms are being developed that use neural networks to compute the selected action, especially for deep reinforcement learning. One subcategory of reinforcement learning is multi-agent reinforcement learning, in which multiple agents are present in the world. As it involves the simulation of an environment, it can be applied to robotics as well. In our paper, we use our modified version of the advantage actor–critic (A2C) algorithm, which is suitable for multi-agent scenarios. We test this modified algorithm on our testbed, a cooperative–competitive pursuit–evasion environment, and later we address the problem of collision avoidance.Downloads
Additional Files
Published
2021-09-30
Issue
Section
Research Papers
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).