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Abstract—Reinforcement learning is one of the most re-
searched fields of artificial intelligence right now. Newer and
newer algorithms are being developed, especially for deep re-
inforcement learning, where the selected action is computed
with the assist of a neural network. One of the subcategories
of reinforcement learning is multi-agent reinforcement learning,
where multiple agents are present in the world. In our paper,
we modify an already existing algorithm, the Advantage Actor-
Critic (A2C) to be suitable for multi-agent scenarios. Afterwards,
we test the modified algorithm on our testbed, a cooperative-
competitive pursuit-evasion environment.

Index Terms—reinforcement learning, multiagent learning

I. INTRODUCTION

Artificial intelligence is one of the most important fields
of today. Of them , reinforcement learning is one of the
most researched fields right now. Newer and newer algorithms
are being developed to reach successful learning in more
situations or to learn the reinforcement learning system with
less samples.

In reinforcement learning, a new challenge frontier arises
when we take other agents into consideration, this research
field is called multi-agent learning. Dealing with other agents
- either cooperative(when agents are cooperating with each
other) or competitive(when the agents are competing against
each other), or a mixture of both - takes learning closer to
real-world scenarios, as in real life, no agent acts solely - even
random counteracts can be treated as ”counteracts of nature”.

In our work, we optimize the Synchronous Actor-Critic
algorithm to perform better in cooperative multi-agent sce-
narios.This would enable us more performance when dealing
with scenarios where agents help each other.

Littman [1] utilized the Minimax-Q algorithm, a zero-sum
multiagent reinforcement learning algorithm first and applied
it to a simplified version of a robotics soccer game. Hu and
Wellmann [2] created the Nash-Q algorithm and used it on
a small gridworld example to show its results. Bowling [3]
varied the learning rate of the training process to speed it
up while ensuring convergence. Later, he applied the Win or
Learn Fast methodology to an actor-critic algorithm to improve
its multi-agent capabilities [4].

Reinforcement learning received a huge improvement when
neural networks gained popularity and convergence was im-
proved. Mnih et al. [5] applied deep reinforcement learning to

playing Atari games successfully by feeding multiple frames
at once and by ensuring convergence by utilizing experi-
ence replay. Later, deep reinforcement learning was applied
to multi-agent systems, for example, to independent multi-
agent reinforcement learning. Foerster et al. [6] stabilized
experience replay for independent Q-learning by using finger-
prints. Omidshafiei et al. [7] utilized Decentralized Hysteretic
Deep Recurrent Q-networks for partially observable multi-
task multi-agent reinforcement learning problems. Multiple ad-
vancements have been made in the filed of centralized learning
and decentralized execution as well. Foerster et al. [8] created
Counterfactual Multi-Agent Policy Gradients where multi-
agent credit assignment was solved. Peng et al. [9] created
Multiagent Bidirectionally-Coordinated Nets with Actor-Critic
hierarchy and Recurrent Neural Networks for communication.
Sunehag et al. [10] utilized Value Decomposition Networks
with common reward and Q function decomposition. Rashid
et al. [11] utiized QMIX with Value Function Factorization,
Q-function decomposition with the help of a feed-forward
neural network with better performance than the former value
decomposition one. Lowe et al. [12] improved the Deep
Deterministic Policy Gradient by a altering the critic to contain
all actions of all agents, thus making the algorithm capable
of processing more multi-agent scenarios. Shihui et al. [13]
improved upon the previous MADDPG algorithm by making
it perform better in zero-sum competitive scenarios by utilizing
a method based on Minimax-Q learning. Casgrain et al. [14]
upgraded the Deep Q-network algorithm by utilizing methods
based on Nash equilibria and thus making it capable of solving
multi-agent environments.

Some benchmarks have also been created to analyze per-
formance of various algorithms in multi-agent environments.
Vinyals et al. [15] modified the Starcraft II game to be a
learning environment. Samvelyan et al. [16] also pointed to
Starcraft as a multi-agent benchmark, but in a micromanage-
ment way. Liu et al. [17] introduced a multi-agent soccer
environment with continuous simulated physics. Bard et al.
[18] reached a new frontier with the cooperative Hanabi game
benchmark.

In our work, we modify the already existing Advantage
Actor-Critic (A2C) Algorithm to better be suitable for multi-
agent scenarios by creating a single-critic version of the



Fig. 1. Markov Decision Process

algorithm. Afterwards, we test this modified A2CM algorithm
on our cooperative-competitive pursuit-evasion testbed.

In the following section, we give a theoretical background of
our work. Then, the experiments themselves and the testbed is
introduced. We continue by showing the results and end with
conclusions on the results and suggestions on future work on
the topic.

II. THEORETICAL BACKGROUND

A. Markov Decision Processes

A Markov Decision Process is a mathematical framework
for modeling of decision making, as it is shown on Figure
1. In a Markov Decision Process there are states, selectable
actions, transition probabilities and rewards. At each timestep
the process starts at a state s, and it selects an action a from the
available action space. Then, it gets a corresponding reward
r, and then finds itself in a state s′ given by the probability
of P (s, s′). A process is said to be Markovian if

P (at = a|st, at−1, ..., s0, a0) = P (at = a|st) (1)

which means that a state transitions only on the previous state
and the current action. Thus, only the last state and action are
interesting regarding the decision for the next state.

In a Markov Decision Process, the agents are trying to find
a policy which maximizes the sum of discounted expected
rewards. The standard solution for this is through iterative
search method which searches for a fized point of the Bellman
equation:

v(s, π∗) = maxa(r(s, a) + γ
∑
s′

p(s′|s, a)v(s′, π∗)) (2)

B. Reinforcement Learning

When the state transition probabilities or the rewards are
unknown, the problem of the Markov Decision Process be-
comes a problem of Reinforcement learning. In this group of
problem the agent tries to make a model of the world around
itself by trial and error.

One type of reinforcement learning is value-based rein-
forcement learning.In this case, the agent tries to learn a value
function that renders a value to the states or to the actions from
states. These values correspond to the achievable reward from
reaching a state or from taking a specific action from a state.

The most commonly used type of value-based reinforce-
ment learning is Q-learning, when the so-called Q-values are
estimated for each of the state-action pairs of the world. These
Q-values represent the value of choosing a specific action in a
state, meaning how much reward could the agent possibly get
by taking that action. The equation for Q-learning for updating
the Q-values of a state is:

Q(s′, a)← (1−α) ·Q(s, a) +α · (r+ γ ·max
a′

Q(s′, a′)) (3)

where α is the learning rate and γ is the discount for the
reward.The agent always selects an action that maximizes the
Q-function for the state that the agent is in.

Another type of reinforcement learning is policy-based
reinforcement learning. In this case, actions are derived as
a function of the state itself. The most common policy-based
reinforcement learning method is policy gradient. In this case,
the agent tries to maximize the expected reward following the
policy πθ parametrized by θ, based on the total reward for a
given trajectory r(τ). Thus, the cost function of the parameters
θ is the following:

J(θ) = Eπθ [r(τ)] (4)

The parameters are then tuned based on the gradient of the
cost function:

θk+1] = θt + α∆J(θt) (5)

An advantage of using policy-based methods is the
possibility of mapping environments with huge, even
continuous action spaces. Environments with stochasticity
can also be solved with them. However, it comes with the
disadvantage of the much greater possibility of getting stuck
in a local maximum rather than following the optimal policy.

Apart from the aforementioned model-free reinforcement
learning methods, there exists also model-based reinforce-
ment learning. In this case, a model is built(or just tuned)
to perform the reinforcement learning. This is more sample-
efficient than model-free methods, thus it requires less samples
to perform equally, but it is very dependent on the model built.
It can be combined with model-free methods to achieved better
results, as in [19].

C. Multi-agent systems, Markov games

A matrix game is a stochastic framework where each player
selects an action and gets their immediate reward based on its
and all other agents’ action. They are called as matrix games
due to the fact that the games can be written as a matrix, with
the first two player selecting action in the row and the column
of the matrix. Unlike Markov Decision Processes, these games
have no state.



Markov games, or Stochastic games are an extension of
Markov Decision Processes with multiple agents. Also, it can
be thought of as an extension to Matrix games with multiple
states. In a Markov game, each state has a payoff matrix for all
of the states. The next state is determined by the joint action
of the agents. A game is Markovian if

P (ati = ai|st, at−1i , ..., s0, a0i ) = P (ati = ai|st) (6)

so the next state depends only on the current state and the
current actions taken by all agents.

D. Deep Reinforcement Learning

A reinforcement learning algorithm is called deep reinforce-
ment learning algorithm if it is assisted by a neural network.

A neural network is a function approximator built from
(even billions and billions of) artificial neurons. An artificial
neuron, based on real neurons of the brain, has the following
equation:

y = Act(
∑

wx+ b) (7)

where x is the input vector, w is the weight vector, b is the bias
and Act() is the activation function to introduce nonlinearity
in an otherwise linear system. The parameters(w and b) are
tuned with backpropagation, calculating the partial derivative
error of all parameters propagated from the final error up until
the input vector.

The selection of the activation function is important in deep
learning due to the vanishing gradients: when many layers
are stacked upon each other, higher layers’ gradients are too
small during backpropagation, thus those layers are difficult to
train. A basic activation function can be a sigmoid or logistic
activation function:

y =
1

1 + e−x
(8)

A common choice of activation function in deep learning is
Rectified Linear Unit (ReLU) [20] which has gradients that
are less vanishing, thus better to train. It has the following
equation:

y = x if x > 0

y = 0 if x <= 0
(9)

For multi-class classification, another activation function is
used: the softmax activation function. When used as the last
layer, the probabilities of all of the output neurons add up to
exactly 1. Thus, in reinforcement learning it is utile to use it
as the probability distribution of the possible actions. It has
the following equation:

y =
exi∑
j e
yj

(10)

Deep reinforcement learning algorithms have several ad-
vantages compared to traditional reinforcement learning algo-
rithms. First of all, they are not based on a state table anymore,
as the states are approximated(much more robust than linear
function approximators). This allows much more states to be
mapped, or even allow the states to be continuous. However,

it is more prone to diverging and thus many optimizations
have been created on deep reinforcement learning algorithms
to provide better convergence on the problems.

E. Actor-critic

An Actor-critic system is the combination of value-based
and policy-based reinforcement learning. In these systems
there are two distinct parametrized networks: the Critic, which
estimates a value function (like in value-based reinforcement
learning), and an Actor, which updates the policy network
based on the direction suggested by the Critic (like in policy-
based reinforcement learning). Actor-critic algorithms follow
an approximate policy gradient:

∇θJ(θ) ≈ Eπθ [∇θlogπθ(s, a)Qw(s, a)

∆θ = α∇θlogπθ(s, a)Qw(s, a)
(11)

Approximating the policy gradient introduces bias to the sys-
tem. A biased policy gradient may not find the right solution,
but if we choose value function approximation carefully, then
we can avoid introducing any bias.

Actor-critic systems generally perform better than regular
reinforcement learning algorithms. The critic network enables
that the system does not get stuck in a local maximum, mean-
while the Actor network lets the mapping of environments with
huge action spaces as well as providing better convergence.

F. A2C algorithm

A2C is the abbreviation of Synchronous Advantage
Actor-Critic. It is a one-environment-at-a-time derivation of
A3C(Asynchronous Advantage Actor-Critic) algorithm [21],
which processed multiple agent-environments simultaneously.
In that, multiple ”workers” update a global value function,
thus exploring the state space effectively. However, the Syn-
chronous Advantage Actor-Critic provides better performance
compared to the asynchronous model.

Advantage function is a method to significantly reduce the
variance of the policy gradient by substracting the cumulative
reward with a baseline to make smaller gradients, thus it
provides much better convergence than regular Q-values.

A(s, a) = Q(s, a)− V (s) (12)

Returns are calculated as the following equation:

Gt = rt + γ ∗ rt+1 ∗ (1− Tt) (13)

where G is the return, rt is the reward at time t, γ is the
discount factor and Tt is whether the step at time t is a terminal
state.

III. EXPERIMENTS AND RESULTS

Figure 2 shows the simulation environment of our work.
The testbed is an 5x5 grid, where are three cooperating agents
in three of the four corners of the environment(the squares). In
the middle, there is a fourth agent(the circle). The former three
agents have the objective of catching the fourth agent, which
moves randomly. The agents can move in four directions:
up, down, left or right. When one of the three agents catch



Fig. 2. Figure about the simulation environment. The squares the controlled
agents, meanwhile the circle represents the fleeing enemy. The goal is to catch
the enemy by moving horizontally or vertically.

the fourth one, the episode is ended. A penalty is introduced
to the cooperative agents every timestep, thus the return of
an episode is maximized by ending the episode as soon as
possible (by catching the fleeing agent as fast as they can).
and each episode must end in 1000 timesteps to avoid getting
stuck in an episode. In the environment, a constant negative
reward is given to the agents which encourages them to end
the episode as fast as they can.

In the modification of the A2C algorithm, we followed the
theory of centralized learning and decentralized execution.
This means that it is enough to have the execution part
decentralized, the learning phase can be assisted by additional
information from other agents. In our case, we used the
information that the agents are cooperative, thus they have
acquire the same rewards (and returns, as well).

In our experiment, the multitudes of A2C models of one
actor and one critic was substituted by one model of one
critic and multiple actors. All neural network layers were as a
subclass of the TensorFlow Model class, which provides utile
functions for training and prediction, even for batch tasks by
only providing the forward steps of the network. The optimizer
was chosen to be RMSprop with learning rate of 7e-3.

The value estimator critic contained a neural network 128
hidden unit layers with ReLU activation function and one
output layer with one unit. Its loss function is a simple mean
squared error between the returns and the value.

The actors contained a hidden layer with 128 hidden units
and an output layer with 4 units (being equal to the number of
the actions in the action space). The loss function contained
two distinct parts: policy and entropy loss. The policy loss was
a weighted sparse categorical cross-entropy loss, where the
weights are given by the advantages. This method increases
the convergence of the algorithm. Entropy loss is a method to
increase exploration, by tending to take actions that are not in
the local minimum. This is very important for tasks with sparse
reward due to the fact that the agent does not receive feedback

often. This loss is calculated as a cross-entropy over itself,
and it is substracted from the policy loss because it should
be maximized, not minimized. The entropy loss is tuned by a
constant, which is taken as 1e-4.

Episode rewards were taken to be a list where a value of
0 was appended to the end of the list at each episode end,
and during the episodes, only the last value of the list was
incremented by the episode reward of the given step. For the
training, a batch-sized container is created for the actions,
rewards, terminal state booleans, state values and observed
states. Then, a two-level loop is started: the outer one is run
for the number of required updates(set by us), meanwhile the
inner loop size is equal to the batch size. In the inner loop, the
environment is run for batch size times and the state observa-
tions, the taken actions (selected by a probability distribution
based on the actor neural network results), the state values,
the rewards, the terminal state booleans and the last observed
state are stored in the aforementioned containers. Then, with
the collected data, the returns and the advantages are calculated
on the batch, and then a batch training is performed on the
collected data. There was no need to calculate the gradients
themselves due to the usage of the Keras API.

During our experiment, the system was run 5000 times in
batches of 128, thus running the environments over totally
640000 steps. Gamma was taken to be 0.99.

Figure 5, Figure 6 show the results of our experiments.
The most important is to check the x coordinates of Figure
5 and Figure 6: for the same number of steps, the original
was run for 40340 episodes meanwhile the modified algorithm
managed to complete 82119 episodes. This means that the
A2CM algorithm spent half as much steps in an episode, thus
it was able to catch the fleeing opponent in average in half time
than the agent based on the original algorithm. These figures
also show that the original algorithm did not find an optimal
solution without diverging later, and even between diverges the
solutions were not as stable. Our agent, on the other hand, has
found a solution with no diverges later and only small diverges
after the first half of episodes. The A2CM algorithm has found
a solution where it can catch the opponent in 6 steps, and it
had maintained the knowledge for 20000 episodes, with one
positive spike where it found the solution to the problem in
just 3 steps.

Run times are worth to take to consideration as well.
The regular A2C algorithm took 14567.45 seconds to run,
meanwhile the modified one ran for 14458.28 seconds. It is
worth noting that due to the almost twice more episodes, the
environment had to be reset twice as more, so the modified
algorithm is even faster that the normal one.

IV. CONCLUSION

As it was seen in the previous section, our modification
on the original A2C algorithm, the A2CM algorithm was
able to perform much better on our testbed than the original
one.Although, the algorithm has the caveat of only being able
to be used when the agents are fully cooperative without any
special predefined roles between them.



Algorithm 1 A2CM
Initialize Model:

Initialize N+1 hidden and N+1 output (1 value + N action) layers (4 different networks in one model, 1 critic + 3 actor)
for number of updates do

for batch size do
Calculate next actions a based on the previous state
Take actions a, get terminal state boolean and new rewards
Store the actions, the terminal state booleans, the calculated values, the rewards and the states

end for
Calculate returns based on (13)
Calculate advantages based on (12)
Update critic neural network based on the observed states and the corresponding returns

loss is MSE between returns and calculated values
Update actor neural networks based on the observed states, the taken actions and the advantages

loss is policy loss(weighted sparse categorical cross-entropy loss) - entropy loss(cross-entropy over itself)
end for

Fig. 3. An example of catching the randomly moving opponent.

Fig. 4. An example of catching the fleeing opponent.

However, there are still a lot of possibilities to improve
upon the current state of our algorithm. First of all, it
can be examined how this algorithm would behave when
collision is tracked between the agents. Collision avoidance
is an important factor in robotics and is rarely checked in
regular pursuit-evasion environments. Also, another possibility
of improvement would be to introduce a variable learning rate
like Win or Learn Fast [3] in a deep reinforcement learning
algorithm. Another point of possible improvement is the
inclusion of the fleeing agent in the algorithm to have it cope
with the full cooperative-competitive being of the environment.

Also, another activation functions can be tried to check their
behavior, for example, Exponential Linear Units [22] might
have better convergence for a price of slightly more training
time. An extension to this algorithm could be the introduction
of the possibility of using recurrent neural networks, to be able
to deal with Partially Observable Markov Decision Processes
(POMDPs) where the full state is unknown.
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Fig. 5. Figure about the performance of the original A2C algorithm on our
benchmark.

Fig. 6. Figure about the performance of the modified A2C algorithm on our
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