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ABSTRACT
Right now, reinforcementReinforcement learning is currently one of the most researched fields of artificial intelligence. Newer and newerNew algorithms are being developed that use neural networks to compute the selected action, especially for deep reinforcement learning, where the selected action is computed with the assist of a neural network.. One of the subcategoriessubcategory of reinforcement learning is multi-agent reinforcement learning, wherein which multiple agents are present in the world.  Possessing aAs it involves the simulation of an environment, it can be applied to robotics as well. In our paper, we use our modified version of the Advantage Actor-Criticadvantage actor–critic (A2C) algorithm that, which is suitable for multi-agent scenarios. We test this modified algorithm on our testbed, a cooperative-–competitive pursuit-–evasion environment, and later we address the problem of collision avoidance.
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Introduction
Artificial intelligence is one of the most important fields of today. Of them , reinforcementReinforcement learning is one of the most researched fields right now.within the scope of artificial intelligence. Newer and newer algorithms are continually being developed to reachachieve successful learning in more situations or to learn the reinforcement learning system with lessfewer samples.
In reinforcement learning, a new challenge frontier arises when we take other agents into consideration, this. This research field is called ‘multi-agent learninglearning’. Dealing with other agents - either – whether they are cooperative(when agents are cooperating with each other) or, competitive(when the agents are competing against each other), or a mixture of both - takes– brings the learning model closer to a real-world scenarios, as in scenario. In real life, no agent acts solely -alone; even random counteracts can be treated as "‘counteracts of nature".nature’.
In our work, we optimizeoptimised the Synchronous Actor-Criticsynchronous actor–critic algorithm to perform better in cooperative multi-agent scenarios.This would enable us more performance when dealing with scenarios where (those in which agents help each other.).
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[bookmark: _Ref312437359][bookmark: _Hlk67401234]Figure 1. Markov Decision Processdecision process.
Littman [1] utilizedutilised the Minimaxminimax-Q algorithm, a zero-sum multiagent reinforcement learning algorithm first, and applied it to a simplified version of a roboticsrobotic soccer game. Hu and Wellmann [2] created the Nash-Q algorithm and used it on a small gridworld example to show itsdemonstrate the results. Bowling [3] varied the learning rate of the training process to speed it up while ensuring convergence. Later, he applied the Winwin or Learn Fastlearn fast methodology to an actor-–critic algorithm to improve its multi-agent capabilities [4].
Reinforcement learning received a huge improvementadvanced significantly when neural networks gained popularity and convergence was improved. Mnih et al. [5] successfully applied deep reinforcement learning to playing Atari games successfully by feeding multiple frames at once and by ensuring convergence by utilizingutilising experience replay. to ensure convergence. Later, deep reinforcement learning was applied to multi-agent systems, for example, tosuch as independent multi-agent reinforcement learning. Foerster et al. [6] stabilizedstabilised experience replay for independent Q-learning by using fingerprints. Omidshafiei et al. [7] utilized Decentralized Hysteretic Deep Recurrentutilised decentralised hysteretic deep recurrent Q-networks for partially observable multi-task multi-agent reinforcement learning problems. Multiple advancements have also been made in the filedfield of centralizedcentralised learning and decentralizeddecentralised execution as well. Foerster et al. [8] created Counterfactual Multi-Agent Policy Gradients wherecounterfactual multi-agent policy gradients to solve the issue of multi-agent credit assignment was solved. Peng et al. [9] created Multiagent Bidirectionally-Coordinated Netsmultiagent bidirectionally-coordinated nets with Actor-Criticactor–critic hierarchy and Recurrent Neural Networksrecurrent neural networks for communication. Sunehag et al. [10] utilized Value Decomposition Networksutilised value-decomposition networks with common rewardrewards and Q -function decomposition. Rashid et al. [11] utilizedutilised QMIX with Value Function Factorizationvalue function factorisation, Q-function decomposition with the help ofand a feed-forward neural network with better performance than the former value -decomposition one. Lowe et al. [12] improved the Deep Deterministic Policy Gradientdeep deterministic policy gradient by a altering the critic to contain all actions of all agents, thus making the algorithm capable of processing more multi-agent scenarios. Shihui et al. [13] improved upon the previous MADDPG algorithm by making it perform better, increasing its performance in zero-sum competitive scenarios by utilizingutilising a method based on Minimaxminimax-Q learning. Casgrain et al. [14] upgraded the Deepdeep Q-network algorithm by utilizingutilising methods based on Nash equilibria and thus, making it capable of solving multi-agent environments.
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Figure 2. The simulation environment. The squares represent the controlled agents, meanwhilewhile the circle represents the fleeing enemy. The goal is to catch the enemy by moving horizontally or vertically. 
Some benchmarksBenchmarks have also been created to analyzeanalyse the performance of various algorithms in multi-agent environments. Vinyals et al. [15] modified the StarcraftStarCraft II game to bemake it a learning environment. Samvelyan et al. [16] also pointed to StarcraftStarCraft as a multi-agent benchmark, but inwith a focus on micromanagement way. Liu et al. [17] introduced a multi-agent soccer environment with continuous simulated physics. Bard et al. [18] reached a new frontier with the cooperative Hanabi game benchmark.
Cooperative multiagent reinforcement learning and the proposed algoirthm are usable at a multitude of scenarios in robotics. As our algorithm is decentralized, it can be installed into the robots themselves without any central command center. It might come handy in exploration or localization tasks where using multiple agents speed up the process by a huge magnitude. Our testbed can be considered as a simplified version of a localization task., where the pursuer robots are trying to approach and measure a non-cooperative moving object. For proper use in robotics, a well-prepared simulation of the robots and the environment is required, in which the thousands of episodes can be run for learning.
In our work, we modify the already existing Advantage Actor-Critic (A2C) Algorithm to better be suitable for multi-agent scenarios by creating a single-critic version of the algorithm. Afterwards, we test this modified A2CM algorithm on our cooperative-competitive pursuit-evasion testbed.
InitializeInitialise Model:
  InitializeInitialise N+1 hidden and N+1 output (1 value + N action) layers (4 different networks in one model, 1 critic + 3 actor) number of updates batch size
for number of updates do
  for batch size do
    Calculate next actions  based on the previous state
    Take actions , get terminal state boolean and new rewards
    Store the actions, the terminal state booleans, the calculated values, the rewards and the states 
  end for
  Calculate returns based on (13)
  Calculate advantages based on (12)
  Update critic neural network based on the observed states and the corresponding returns: loss is MSEthe mean squared error between the returns and calculated values
  Update actor neural networks based on the observed states, the taken actions and the advantages: loss is policy loss(weighted sparse categorical cross-entropy loss) -− entropy loss(cross-entropy over itself)
end for
Algorithm 1: A2CM. 
Cooperative multiagent reinforcement learning and the proposed algoirthm are usable in many scenarios in robotics. As our algorithm is decentralised, it can be installed into the robots themselves without any central command center. It might be useful in exploration or localisation tasks in which the use of multiple agents would significantly speed up the process. Our testbed can be considered a simplified version of a localisation task, as the pursuer robots are trying to approach and measure a non-cooperative moving object. For proper use in robotics, a well-prepared simulation of the robots and the environment is required, in which thousands of episodes can be run for learning.
In our work, we modified the already existing advantage actor–critic (A2C) algorithm to make it better suited for multi-agent scenarios by creating a single-critic version of the algorithm. Then, we tested this modified A2CM algorithm on our cooperative–competitive pursuit–evasion testbed.
In the following section, we give aexplain the theoretical background offor our work. Then, the experiments themselves and the testbed isare introduced. We continue by showingpresenting the results and end with our conclusions on the results and suggestions onfor future work on the topic.
Theoretical background
Markov Decision Processesdecision processes
A Markov Decision Processdecision process is a mathematical framework for modeling of decision making, as it is shown onin Figure 1. In a Markov Decision Processdecision process there are states, selectable actions, transition probabilities and rewards [1]. At each timestep, the process starts at a state , and it selects an action  from the available action space. Then, itIt gets a corresponding reward , and then finds itself in a state  given by the probability of . A process is said to be Markovian if 
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which means that a state transitionsstate’s transition is based only on the previous state and the current action. Thus, only the last state and action are interesting regarding the decision forconsidered when deciding on the next state.
In a Markov Decision Processdecision process, the agents are trying to find a policy which maximizesthat maximises the sum of discounted expected rewards. The standard solution for this is throughuses an iterative search method whichthat searches for a fizedfixed point of the Bellman equation: 
	
	(2)



Reinforcement Learninglearning
When the state transition probabilities or the rewards are unknown, the problem of the Markov Decision Processdecision process becomes a problem of Reinforcementreinforcement learning. In this group of problemproblems, the agent tries to make a model of the world around itself byvia trial and error.
One type of reinforcement learning is value-based reinforcement learning. In this case, the agent tries to learn a value function that renders a value to the states or to the actions from states. These values correspond to the achievable a reward fromachieved by reaching a state or from taking a specific action from a state.
The most commonly used type of value-based reinforcement learning is Q-learning [2], whenin which the so-called Q-values are estimated for each of the state-–action pairs of the world. These Q-values represent the value of choosing a specific action in a state, meaning how muchthe highest reward could the agent could possibly get by taking that action. The equation for Q-learning for updating the Q-values of a state is: 
	
	(3)


where  is the learning rate and  is the discount for the reward. The agent always selects an action that maximizesmaximises the Q-function for the state that the agent is in.
[image: Shakuhachi]
Figure 3. An example of catching the randomly moving opponent.

Another type of reinforcement learning is policy-based reinforcement learning. In this case, actions are derived as a function of the state itself. The most common policy-based reinforcement learning method is the policy gradient approach [19]. In this case, the agent tries to maximizemaximise the expected reward by following the policy  parametrizedparametrised by , based on the total reward for a given trajectory . Thus, the cost function of the parameters  is the following: 
	
	(4)


The parameters are then tuned based on the gradient of the cost function: 
	
	(5)


An advantageThe advantages of using policy-based methods isinclude the possibility of mappingability to map environments with huge, or even continuous action spaces. Environments and solve environments with stochasticity can also be solved with them.. However, it comes with the disadvantage of thewhen using these methods, there is also a much greater possibility of getting stuck in a local maximum rather than following the optimal policy. 
Apart from the aforementioned model-free reinforcement learning methods, there existsis also model-based reinforcement learning. In this case, a model is built (or just tuned) to perform the reinforcement learning. This is more sample-efficient than model-free methods, and thus it requires lessfewer samples to perform equally, but it is very dependent on the particular model built. It can be combined with model-free methods to achievedachieve better results, as in [20]. 
Multi-agent systems, and Markov games
A matrix game is a stochastic framework wherein which each player selects an action and gets theiran immediate reward based on its and all other agents’ their action and those of the other agents [1]. They are called as ‘matrix games due to the fact thatgames’ because the gamesgame can be written as a matrix, with the first two playerplayers selecting actionactions in the rowrows and the columncolumns of the matrix. Unlike Markov Decision Processesdecision processes, these games have no statestates.
[image: Shakuhachi]
Figure 4. An example of catching the fleeing opponent.
Markov games, or Stochasticstochastic games, are an extensionextensions of Markov Decision Processesdecision processes with multiple agents. Also, itThey can also be thought of as an extension to Matrixextensions of matrix games with multiple states. In a Markov game, each state has a payoff matrix for all of the states. The next state is determined by the joint actionactions of the agents. A game is Markovian if 
	
	(6)


so the next state depends only on the current state and the current actions taken by all agents. 
Deep Reinforcement Learningreinforcement learning
A reinforcement learning algorithm is called deep reinforcement learning algorithm‘deep’ if it is assisted by a neural network.
A neural network is a function approximator built from (even billions andsometimes billions of) artificial neurons. An artificial neuron, which is based on the real neurons of the brain, has the following equation: 
	
	(7)


where  is the input vector,  is the weight vector,  is the bias and  is the activation function to introduce nonlinearity in an otherwise linear system. The parameters ( and ) are tuned with backpropagation, calculating the partial derivative error of all parameters propagated from the final error up untilto the input vector.
[image: ]
Figure 5. The performance of the original A2C algorithm on our benchmark. 	Comment by Proofed: In this and other graphs, include commas in numbers greater than 999 (’25,000’).
The selection of the activation function is important in deep learning due to the vanishing gradients: when many layers are stacked upon each other, higher layers’ gradients are too small during backpropagation, and thus, those layers are difficult to train. A basic activation function can be a sigmoid or logistic activation function: 
	
	(8)


[image: ]
Figure 6. Performance of the modified A2C algorithm on our benchmark. 
A common choice of activation function in deep learning is Rectified Linear Unitrectified linear unit (ReLU) [21], which has gradients that are less vanishing, thus and therefore better to train. It has the following equation: 
	
	(9)



For multi-class classification, another activation function is used: the softmax activation function. When used as the last layer, the probabilities of all of the output neurons add up to exactly 1. Thus, in reinforcement learning, it is utile to use it as the probability distribution of the possible actions. It has the following equation: 
	
	(10)
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Figure 7.. Performance of the original A2C algorithm on our benchmark with collision (with terminating at collision).	Comment by Proofed: In the heading of the graph, a space is needed between ‘collision’ and ‘(with’.
Deep reinforcement learning algorithms have several advantages compared to traditional reinforcement learning algorithms. First of all, they are not based on a state table anymore, as the states are approximated( (which is much more robust than using linear function approximators). This allows muchmany more states to be mapped, or and even allow the states to beallows for continuous states. However, it isthey are more prone to diverging, and thus, many optimizationsoptimisations have been created on deep reinforcement learning algorithms to provide better convergence on the problems. 
Actor-–critic
An Actor-actor–critic system is the combination ofcombines value-based and policy-based reinforcement learning. In these systems, there are two distinct parametrizedparametrised networks: the Criticcritic, which estimates a value function (likeas in value-based reinforcement learning), and an Actoractor, which updates the policy network based on the direction suggested by the Critic (likecritic (as in policy-based reinforcement learning). Actor-–critic algorithms follow an approximate policy gradient: 
	

	(11)


Approximating the policy gradient introduces bias to the system. A biased policy gradient may not find the right solution, but if we choose the value function approximation carefully, then we can avoid introducing any bias.
Actor-–critic systems generally perform better than regular reinforcement learning algorithms. The critic network enablesensures that the system does not get stuck in a local maximum,; meanwhile, the Actoractor network letsenables the mapping of environments with huge action spaces as well as providingand provides better convergence [19]. 
The A2C algorithm
A2C is the abbreviation of Synchronous Advantage Actor-Critic.stands for synchronous advantage actor–critic. It is a one-environment-at-a-time derivation of the asynchronous advantage actor–critic (A3C(Asynchronous Advantage Actor-Critic) algorithm [22], which processedprocesses multiple agent-environments simultaneously. In that algorithm, multiple "workers" update a global value function, thus exploring the state space effectively. However, the Synchronous Advantage Actor-Criticsynchronous advantage actor–critic provides better performance compared tothan the asynchronous model.
[image: ]
Figure 8. Performance of the A2CM algorithm on our benchmark with collision (with terminating at collision).	Comment by Proofed: In the headings above the graphs in Figures 8 and 10, a space is needed before the opening parenthesis in each case.
Advantage function is a method tothat significantly reducereduces the variance of the policy gradient by substractingsubtracting the cumulative reward withusing a baseline to make smaller gradients,; thus, it provides much better convergence than regular Q-values. It has the following equation: 
	
	(12)


Returns are calculated asusing the following equation: 
	
	(13)


where  is the return,  is the reward at time t,  is the discount factor and  isindicates whether the step at time  is a terminal state. 
Experiments and Results
[image: ]
Figure 9. Number of steps per episode of the original A2C algorithm on our benchmark with collision (without terminating at collision). 
The testbed is ana 5 × 5 grid, where are with three cooperating agents (the squares) in three of the four corners of the environment(the squares).. In the middle, there is a fourth agent (the circle). The former three agents have the objective of catching the fourth agent, which moves randomly. This testbed is analogous to the pursuit-–evasion (or predator-–prey) scenarios that are also significant also in robotics. The agents can move in four directions: up, down, left or right. When one of the three agents catchcatches the fourth one, the episode is endedends. A penalty is introduced to the cooperative agents every timestep,; thus, the return of an episode is maximizedmaximised by ending the episode as soon as possible (byi.e. catching the fleeing agent as fastquickly as they can). and eachpossible). Each episode must end in 10001,000 timesteps to avoid getting stuck in an episode.. In the environment, a constant negative reward is given to the agents, which encourages them to end the episode as fast as they can.	Comment by Proofed: This sentence seems redundant and could be removed.
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Figure 10. Number of steps per episode of the A2CM algorithm on our benchmark with collision (without terminating at collision).
In the modification of the A2C algorithm, we followed the theory of centralizedcentralised learning and decentralizeddecentralised execution. This means that it is enough to have the execution part decentralized,is decentralised, but the learning phase can be assisted by additional information from other agents. In our case, we used the information that the agents are cooperative,; thus, they have acquire the same rewards (and returns, as well). As it was noted before, decentralizeddecentralised execution is the most helpful in real-world scenarios like robotics, where due to thein which communication difficulties of the communication,make a centralizedcentralised task -solving achitecture is not possibleimpossible. Such scenarios are often encountered in robotics.
In our experiment, the multitudes ofmany A2C models ofwith one actor and one critic waswere substituted byfor one model ofwith one critic and multiple actors. The pseudocode of the algorithm can be seen in Algorithm 3. All neural network layers were as a subclasssubclasses of the TensorFlow Modelmodel class, which provides utile functions for training and prediction, – even for batch tasks – by only providing only the forward steps of the network. The optimizeroptimiser was chosen to be RMSprop, with a learning rate of 7 · 10-−3.
The value estimator critic contained a neural network of 128 hidden unit layers with ReLU activation function and one output layer with one unit. Its loss function iswas a simple mean squared error between the returns and the value.
[image: ]
Figure 11. Rewards per episode of the original A2C algorithm on our benchmark with collision (without terminating at collision).
The actors contained a hidden layer with 128 hidden units and an output layer with 4four units (being equal to the number of the actions in the action space). The loss function contained two distinct parts: policy and entropy loss. The policy loss was a weighted sparse categorical cross-entropy loss, where the weights arewere given by the advantages. This method increasesincreased the convergence of the algorithm. Entropy loss is a method to increasefor increasing exploration, by tending to takeencouraging actions that are not in the local minimum. This is very important for tasks with sparse rewardrewards due to the fact that the agent does not receive feedback often. This loss iswas calculated as a cross-entropy over itself, and it is substractedwas subtracted from the policy loss because it should be maximizedmaximised, not minimizedminimised. The entropy loss iswas tuned by a constant, which iswas taken as 1 · 10-−4.
[image: ]
Figure 12. Rewards per episode of the A2CM algorithm on our benchmark with collision (without terminating at collision).
Episode rewards were taken to be a list where a value of 0 was appended to the end of the list at each episodeepisode’s end, and during. During the episodes, only the last value of the list was incremented by the episode reward of the given step. For the training, a batch-sized container iswas created for the actions, rewards, terminal state booleans, state values and observed states. Then, a two-level loop iswas started: the outer one iswas run for the number of required updates (set by us), meanwhilewhile the inner loop size is equal towas run as many times as the batch size. In the inner loop, the environment is run for batch size times and theThe state observations, the taken actions (which were selected by a probability distribution based on the actor neural network results), the state values, the rewards, the terminal state booleans and the last observed state arewere stored in the aforementioned containers. Then, with the collected data, Next, the returns and the advantages arewere calculated on the batch,  using the collected data, and then a batch training iswas performed on the collectedthose data. There was no need to calculate the gradients themselves due to the usageuse of the Keras API.
During our experiment, the system was run 50005,000 times in batches of 128, thus running the environments over totally 640000a total of 640,000 steps. Gamma was taken to be 0.99.
FigureFigures 3 and Figure 4 show the endends of some remarkable episodes of catching the opponent. FigureFigures 6, Figure and 7 show the results of our experiments. The mostIt is important is to checknote the x -coordinates of Figurein Figures 5 and Figure 6: for the same number of steps, the original was run for 4034040,340 episodes meanwhile, while the modified algorithm managed to complete 8211982,119 episodes. This means that the A2CM algorithm spent half as muchmany steps in an episode, thus it and was able to catch the fleeing opponent in, on average in, half of the time thanrequired by the agent based on the original algorithm. These figures also show that the original algorithm did not find an optimal solution without diverging later, and even between divergesdivergences, the solutions were not as stable. Our agent, on the other hand, has found a solution with no divergesdivergences later and only small divergesdivergencess after the first half of the episodes. The A2CM algorithm has found a solution wherewith which it can catch the opponent in 6 steps, and it had maintained thethis knowledge for 2000020,000 episodes, with one positive spike where it found the solution to the problem in just 3 steps.
RunThe run times are worth to take into considerationconsidering, as well. The regular A2C algorithm took 1456714,567.45 seconds to run, meanwhilewhile the modified one ran for 1445814,458.28 seconds. It is worth noting that, due to the fact that almost twice moreas many episodes were completed, the environment had to be reset twice as moreoften, so the modified algorithm is even faster thatthan the normal one.
Later, the difference between the algorithms were tested with collision turned on, bringing the problem set even closer to real-world robotics scenarios in robotics. In this case, the agents receivereceived a penalty if they collidecollided with each other. This method makes the environment much harder to learn, as failure will probably only result from chasing the enemy agent will probably result in failure, and it. It also hardensmakes the training process harder, as the steps leading to success are not as easy to determine due to the fact; a collision that collidingoccurs before catching the enemy is caught will make similar attempts also less likely to select in action selection.be selected as actions. 
InWhen considering the training process of the environment with collision detection turned on, it is important to pay attention to the reward ratio between the negative rewards for each step and the negative reward for collision. The larger the reward for collision is, the better the agents will evade collision,; otherwise, they will be optimizedoptimised to finish the episode as fast as possible . For this reason, the negative reward for each step iswas selected as -1000−1,000, and the negative reward for the collision is -150000000 as this provides bigwas −150,000,000, providing a ratio that is large enough ratio forto encourage the agants to tryagents to follow a collision -evasion policy.
In the first experiment on the environment with collision detection on, we tried to set the algorithms in a situation wheresuch that a collision would terminate the episode. This scenario is analogous to certain scenarios in robotics where collision wouldin which collisions can cause malfunctions in the robots themselves and should be evaded even via high-level control. Apart from turning on the collision, all other conditions and parameters of the training process were the same as it was without the collision. Figure 7 and Figure. Figures 7 and 8 show the cumulated rewards per episode for the original A2C and our A2CM algorithm, respectively. It can be seen that, while neither werewas able to solve the environment over the timespan of the training, but it can be seen that during the training phase, there was a time span of ccaca. 700 episodes whenin which our algorithm was able to manage to catch the enemy without colliding, while the. The original algorithm lacked any of these longer periods. The training of the original algorithm in this case took 1417314,173.42 seconds, while the training of the A2CM took 1465914,659.00 seconds. It is worth noting that the number of theoriginal algorithm completed 1,665 episodes on the former one is 1665 meanwhile for the A2CM it is 3723, and thus the difference in the number of the reinitializations has also taken some timethe A2CM completed 3,723; the different numbers of reinitialisations should be considered when comparing the training times.
To make the environment easier to train on, the second experiment on the collision iswith collisions was conducted such that the episodes are only terminated if the opponent iswas caught. This way, the episodes arewere longer and always terminate with ‘success’. thus these episodesterminated successfully and therefore might provide better training information than the setting of the previous experiment. This scenario is analogous to problems in robotics where having in which the presence of two robots in the same  area is discouraged, like insuch as area scanning scenarios (or sub-tasks) of area scanning, where in which two robots should not scan the same area at once. Just as in the previous experiment, all other parameters were left as they were in the training of the system without collision. FigureFigures 9 and Figure 10 show the number of steps required to finish each episode for the original A2C and the modified A2CM algorithmalgorithms, respectively, while FigureFigures 11 and Figure 12 show the cumulated (negative) rewardrewards per episode (higher is better),) for the A2C and the A2CM algorithmalgorithms, respectively. It can be seen that, while the original A2C algorithm did not show any clear sign of successful training, the A2CM algorithm hasthere is some signsindication of it.success for the A2CM algorithm. Approaching the end of the training process, the number of steps wherewere kept low, and looking at the rewards of, as per Figure 12, the collisions were also evaded, with the exception of some episodes. The original algorithm completed 11771,177 episodes, while the modified one completed 1964, this1,964, which can also be seen as a sign of the superiority of the A2CM algorithm. Regarding the training times, the original algorithm was trained for 1398113,981.22 seconds, while the modified one was trained for 1951919,519.85 seconds. In this case, it is clearly seenclear that the training time of our algorithm wasused significantly more training time.
Conclusion
Looking at the previous section, we can conclude that our modification onof the original A2C algorithm, the A2CM algorithm, was able to perform much better than the original on our testbed without collision than the original one, and for. To some extent, it outperformsoutperformed the original A2C algorithm even in enviroments with collision,; thus, it is also recommendable for tasks in robotics. StillHowever, the algorithm has the caveat of only being able to be used usable only when the agents are fully cooperative without any and do not have special, predefined roles between them.
There are still a lot of possibilitiesmany ways to improve upon the current state of our algorithm. First of all, a possibility ofOne possibile improvement would be to introduce a variable learning rate like Win, such as win or Learn Fastlearn fast [3], in a deep reinforcement learning algorithm. Another point of possible improvement is the inclusion ofto include the fleeing agent in the algorithm to have it cope withso that the algorithm encompasses the full cooperative-–competitive beingnature of the environment. Also, anotherIn addition, other activation functions cancould be tried to check their behavior,; for example, Exponential Linear Unitsexponential linear units [23] might have better convergence for aat the price of slightly more training time. An extension to thisThe algorithm could be the introduction of the possibility ofextended using recurrent neural networks, to be able to deal with Partially Observable so that it could handle partially observable Markov Decision Processes (POMDPs) wheredecision processes in which the full state is unknown. 
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