Magnetic circuit optimization of linear dynamic actuators
DOI:
https://doi.org/10.21014/acta_imeko.v10i3.1064Abstract
Contactless braking methods (with capability of energy recuperation) are more and more widely used and they replace the traditional abrasive and dissipative braking techniques. In case of rotating motion, the method is trivial and often used nowadays. But when the movement is linear and fast alternating, there are only a few possibilities to break the movement. The basic goal of research project is to develop a linear braking method based on the magnetic principle, which enables the efficient and highly controllable braking of alternating movements. Frequency of the alternating movement can be in wide range, aim of the research to develop contactless braking method for vibrating movement for as higher as possible frequency. The research includes examination and further development of possible magnetic implementations and existing methods, so that an efficient construction suitable for the effective linear movement control can be created. The first problem to be solved is design a well-constructed magnetic circuit with high air gap induction, which provides effective and good dynamic parameters for the braking devices. The present paper summarizes the magnetostatics design of “voice-coil linear actuator” type actuators and the effects of structure-related flux scattering and its compensation.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).