Mineral diagnostics: SEM-EDS Monte Carlo strategy for optimised measurements of ultrathin fragments in Cultural Heritage studies
DOI:
https://doi.org/10.21014/acta_imeko.v10i1.832Abstract
The availability of minute quantities of sampling material is often an issue in the context of cultural heritage and archaeology due, for instance, to the value of the sample, its uniqueness or the small amount of residual material which testify the original form of the art to be restored. In this context, electron-excited energy-dispersive X-ray spectrometry (EDS) performed in a scanning electron microscope (SEM) has proven to be a primary methodology for analysing minute quantities of material thanks to its morphological and micro-analytical capability. However, when dealing with micro- and sub-micrometre specimens, as can be the case in ultrathin glass and metal fragments, several effects resulting from the physics and operational settings of the measurement must be considered to avoid quantification errors. In this paper, a detailed study of the effects of micro- and nanometric-sized glass and gold-alloy fragments on SEM-EDS microanalysis is presented. Monte Carlo simulations of different kinds of elongated glass fragment, with a square section and a thickness of 0.1 to 10 µm, and of some gold alloys demonstrated a strong influence in terms of the fragment size and operational conditions (beam energy, detector position, etc.). This work can be used to devise an appropriate and optimised measurement strategy.Downloads
Additional Files
Published
2021-03-31
Issue
Section
Research Papers
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).