Mixed baseband architecture based on FBD ΣΔ–based ADC for multistandard receivers
DOI:
https://doi.org/10.21014/acta_imeko.v4i3.258Abstract
This paper presents the design and simulation results of a novel mixed baseband stage for a frequency band decomposition (FBD) analog-to-digital converter (ADC) in a multistandard receiver. The proposed FBD-based ADC architecture is flexible with programmable parallel branches composed of discrete time (DT) 4th order single-bit Sigma-Delta modulators. The mixed baseband architecture uses a single non-programmable anti-aliasing filter (AAF) avoiding the use of an automatic gain control (AGC) circuit. System level analysis proved that the proposed FBD architecture satisfies design specifications of the software defined radio (SDR) receiver. In this paper, the authors focus on the Butterworth AAF filter design for a multistandard receiver. Besides, theoretical analysis of the reconstruction stage for UMTS test case is discussed. It leads to a complicated system of equations and high digital filter orders. To reduce the digital reconstruction stage complexity, the authors propose an optimized digital reconstruction stage architecture design. The demodulation-based digital reconstruction stage using two decimation stages has been implemented using MATLAB/SIMULINK. Technical choices and performances are discussed. The computed signal-to-noise ratio (SNR) of the MATLAB/SIMULINK FBD ADC model is equal to at least 75 dB which satisfies the dynamic range required for UMTS signals. Next to hardware implementation with quantized filters coefficients, the authors implemented their proposition in VHDL in a SysGen environment. The measured SNR of the hardware implementation is equal to 74.08 dB which satisfies the required dynamic range of UMTS signals.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).