A modified truncation and rounding-based scalable approximate multiplier with minimum error measurement
DOI:
https://doi.org/10.21014/acta_imeko.v11i2.1245Abstract
Multiplication necessitates more hardware resources and processing time. In a scalable method of approximate multiplier, the truncated rounding technique is added to reduce the number of logic gates in partial products with the help of leading one-bit architecture. Truncation and Rounding based Scalable Approximate Multiplier (TOSAM) has few modes of error measurement based upon height (h) and truncated (t) named as (h,t). These multipliers are named as TOSAM(0,2), TOSAM(0,3), TOSAM(1,5), TOSAM(2,6), TOSAM(3,7), TOSAM(4,8), and TOSAM(5,9). Multiplication provides a substantial impact on metrics like power dissipation, speed, size and power consumption. A modified approximate absolute unit is proposed to enhance the performance of the existing approximate multiplier. The existing 16-bit (3,7) error measurement multiplier shows an error measurement value of 0.4 %. The proposed 16-bit multiplier for the same error measurement possesses the error measured value is of 0.01%, mean relative error measured value of 0.3 %, mean absolute relative error measured value of 1.05, normalized error distance measured value of 0.0027, variance of absolute error measured value of 0.52, delay of 1.87 ns, power of 0.23 mW, energy of 0.4 pJ. The proposed multiplier can be applied in image processing. The work is designed in Verilog HDL and simulated in Modelsim, Synthesized in Vivado.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).