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1. INTRODUCTION 

In a recent technology of digital signal processing application, 
a multiplier is a priority one with low area and low power 
utilizations. Nowadays, approximate multiplier is functioning in 
good manner to reduce area, delay, power, error measurement 
and energy utilization. As a result of these specifications, 
approximate computing becomes a trendy trend in the world of 
digital design 0. Because of the high speed, fault tolerance, and 
power efficiency, the demand for efficient approximate 
multipliers is growing. The method of approximation computing 
encompasses a number of models, including data mining and 
multimedia processing [2]. Multipliers are critical components in 
applications like digital signal processing, microprocessors, and 
embedded systems to accomplish operations like filtering and 
neural network convolution. These multipliers are made with 
complicated logic blocks, which increases the amount of energy 
consumed when the size of the circuit is increased. Because the 
multiplier is a fundamental component of mathematical units, 

the configuration of approximation multiplier design has been a 
research topic for many years [3]. The approximation multiplier 
is made up of a few basic blocks in which the approximate 
technique is performed by using any one of the various phases 
[3]. When it comes to approximation techniques, truncation of 
partial products is one of the most effective methods for 
reducing the error by using correction functions [4]. There are 
various types of error measurement approximate multipliers 
depending on the operand size. This error measurement is used 
to overcome the problem of high latency and energy utilization, 
this work introduced a measurement of scalable approximate 
multiplier using truncated rounding-based technique which is 
used to minimize the measure of partial products based on 
leading one bit position [5]. The proposed error measurement 
approximate multiplier is of different bitlengths. 

2. GENERALISED APPROXIMATE COMPUTING 

Approximation computing process is executed at multiple 
architecture layers, software, and other circuits [6] and the study 

ABSTRACT 
Multiplication necessitates more hardware resources and processing time. In a scalable method of approximate multiplier, the truncated 
rounding technique is added to reduce the number of logic gates in partial products with the help of leading one-bit architecture. 
Truncation and Rounding based Scalable Approximate Multiplier (TOSAM) has few modes of error measurement based upon height (h) 
and truncated (t) named as (h,t). These multipliers are named as TOSAM(0,2), TOSAM(0,3), TOSAM(1,5), TOSAM(2,6), TOSAM(3,7), 
TOSAM(4,8), and TOSAM(5,9). Multiplication provides a substantial impact on metrics like power dissipation, speed, size and power 
consumption. A modified approximate absolute unit is proposed to enhance the performance of the existing approximate multiplier. 
The existing 16-bit (3,7) error measurement multiplier shows an error measurement value of 0.4 %. The proposed 16-bit multiplier for 
the same error measurement possesses the error measured value is of 0.01%, mean relative error measured value of 0.3 %, mean 
absolute relative error measured value of 1.05, normalized error distance measured value of 0.0027, variance of absolute error 
measured value of 0.52, delay of 1.87 ns, power of 0.23 mW, energy of 0.4 pJ. The proposed multiplier can be applied in image 
processing. The work is designed in Verilog HDL and simulated in Modelsim, Synthesized in Vivado.  
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of approximate computing is also applied in deep learning. 
Arithmetic computation is performed by using the design of 
addition (in some cases can be termed as accumulation) and 
multiplication and for some applications, for instance as DSP 
and machine learning. To achieve the power and latency savings, 
many approximate adders have been developed. Speculative 
adders and non-speculative transistor-level complete adders are 
collaborated to create the current approximate adder designs.  

The basic four parts of approximate multiplier are:  

- Approximation of operands 

- Approximation of partial product generation 

- Approximation of partial product tree 

- Approximation of compressors 

2.1. Approximation of operands 

Mitchell proposed the concept of a logarithmic multiplier 
(LM), which uses estimated operands to perform multiplication. 
The LM performs the operation by changing the operands to 
approximate logarithmic numbers using shifting and addition 
operations. Using precise piecewise linear approximation [7] and 
iterative methodology, the accuracy of contemporary designs of 
logarithmic multipliers is increased. The usage of estimated 
operands by the Error-Tolerant Multiplier (ETM) and a 
Dynamic Range Unbiased Multiplier (DRUM) [8] are the further 
enhancement in multipliers. The ETM [9] is found with a 
technique known as multiplier partitioning, which divides a 
multiplier into accurate multiplication and non-multiplication 
parts. The Least Significant Bits (LSBs) decide non-
multiplication, while the Most Significant Bits (MSBs) determine 
proper multiplication. 

2.2. Approximation of Partial Product generation 

To obtain the measured final product, we execute some 
specific processes, but before that the partial products had to be 
generated and these undergo some compression operations. The 
Under Designed Multiplier (UDM), is being forwarded by 
substituting one entry of the Karnaugh-map based on 2 × 2 
approximation multipliers. The approximation 2 × 2 multipliers 
are utilised as fundamental units for bigger size multipliers to 
yield approximate partial products which are collected by using 
the correct adder tree. During the partial product accumulation 
stage, the generalised design of UDM is examined for further 
utilising carry-in prediction [10]. On approximation booth 
encoders, a study [11] is carried out. It uses two efficient radix-4 
approximation booth encoders. 

2.3. Approximation of Partial Product tree 

In general, the truncation approach is used for incomplete 
product trees. The fixed-width multiplier estimates the least 
significant partial products as unchanged. Some of the least 
significant columns are omitted in the inexact array multiplier, 
resulting in constant partial product columns. Among the 
reduction and rounding strategies, the truncated multiplier that 
employs the correction constant is chosen. Variable correction is 
required for truncated multipliers to avoid excessive mistakes. 

2.4. Approximation of compressors 

Compressors are commonly employed in the construction of 
high-speed multipliers [12] to accelerate the accumulation of 
Partial Products (PP). Some error compensation algorithms for 
fixed-width booth multipliers [13] have recently been proposed, 
which increases the multipliers accuracy. The error 
compensation circuit is developed using a simpler sorting 

network. Several researches have been undertaken on how to 
determine or identify a number's logarithm and antilogarithm, 
with the replica being found. Mitchell suggested a simple method 
for calculating a number's logarithm and antilogarithm, which is 
then utilised to generate approximate multiplication results 
(Mitchell multiplier). Although the multiplier is proposed, it falls 
short of the mark, hence more research has been done to 
improve the approximation in the measurement of Mitchell-
based logarithmic multipliers. 

3. PROPOSED APPROXIMATE MULTIPLIER 

The proposed approximate multiplier having an error 
measurement of 16-bit for the rounding and truncation 
parameters of measurement (3,7) consists of blocks namely 
Approximate Absolute Unit (AAU), Leading One Detector unit 
also referred as foremost one detector unit (LOD), Truncation 
unit (TU), Arithmetic Unit (AU), Shift Unit (SU), Sign and Zero 
Detector unit (SZD), and is represented in Figure 2. 

3.1. Approximate Absolute Unit 

The AAU is given by inputs of A and B. If the input operand 
is negative, the results are inverted; if the input operand is 
positive, the results are unchanged. This AAU can be removed 
for unsigned multipliers. It appears as |A|app and |B|app, for the 
measured values of A and B as described in [14]. 

3.2. Leading One Detector Unit 

The LOD unit or foremost one detector unit takes input as 
|A|app and |B|app, values. By using these measurement values 
the kA and kB are detected, which detects the ‘1’ in the MSB. 
These kA and kB are responsible for shifting operation. 

3.3. Truncation Unit 

The inputs for this TU are measured as kA and kB, and also 
this is having another two inputs which are measured as |A|app 
and |B|app, values. The approximation inputs [15] are trimmed 
and converted to fixed width operands rely on the leading one 
position of the input operands. The output is obtained from 
truncation unit are measured as (YA)t and (YB)t these are given as 
inputs to the arithmetic unit. The terms (YA)t and (YB)t acquired 
from the truncated unit is the measured value which is 
represented in the following equation: 

TU = 1+(YA)t + (YB)t+ (YA)APX +(YB)APX . (1) 

3.4. Arithmetic Unit 

This AU will perform addition on the truncated fixed width 
operand as well as the product of approximation input, which is 
denoted by the value '1' and can be written as TU. It's worth 
noting that the MSBs of (YA)APX and (YB)APX are identical to 
those of measured values of (YA)t and (YB)t. Some adders and 
logical AND gates in the Arithmetic Unit require power gating, 
this is determined by the operating mode. This is done to 
improve the design's energy efficiency. The arithmetic block is 
the same for all the bit lengths.  

3.5. Shift unit 

The Arithmetic Unit's output must be left shifted by the 
measured value of kA + kB times (kA and kB are the leading one-
bit values of A and B) The term 2 kA+kB (1+(YA)t + (YB)t+ 
(YA)APX (YB)APX) can be obtained by conducting the shifting 
operation, as shown in [16]. For the greatest truncation 't' and 
rounding 'h' values (h = 5 and t = 9 in this case), the TOSAM 
multiplier should be developed. 
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3.6. Sign and Zero Detector Unit 

The output operands sign is determined by the sign of the 
input operands, and if at least one of the inputs is zero, the output 
is set to zero. The AAU should be eliminated, due to the 
unsigned input operands, and the sign and zero detector unit 
should be restored with a Zero Detector Unit (ZD), as the 
measurement of the sign unit is unnecessary when the input 
operands are unsigned. 

The proposed approximate absolute unit is implemented in 
the truncated approximate multiplier. The error measurement 
values (YA)APX ((YB)APX) are denoted as h + 1 bits in this  
example. When compared to the exact 16-bit multiplier of 
measurement of (3,7) in Figure 1, the below dot diagram gives an 
overview of the procedure for a specific measurement where 
truncation 't' and rounding 'r' and their values are treated as t = 
7 and h = 3 respectively. In the dot diagram below, the green 
square represents the "1" bit in the measured term 1+(YA)t 
+(YB)t + (YA)APX (YB)APX. On the MSB side, the orange circles 
represent partial products of (YA)APX and (YB)APX, while the 
purple triangles represent the MSB bits of (YA)t and (YB)t. The 
remaining grey circles and triangles in the dot diagram are not 
included in the current operations, but they will be considered 
for future multiplier computations. The measurement of partial 
multipliers in the approximation multiplier for 16-bit is illustrated 
in Figure 3. 

The process involved in multiplying input operands A by B 
for a specific measurement of truncation t = 7 and rounding 
h = 3 is shown in Figure 1. The TOSAM (X, Y) structures, where 
X and Y correlate to the rounding 'h' and truncation 't' 
parameters, and the correctness of this multiplier technique is 
mostly determined by these parameters ‘t’ and ‘h’. 

As a result, the relationship between these two parameters, 't' 
and 'h' must be satisfied in order to ensure maximum precision, 
as well as a speed and energy consumption that is reasonable. 
Finally, by examining several approaches, this multiplication 
strategy can be employed for both signed and unsigned operands. 
To apply this approach to signed multipliers, we must first 
determine the absolute value of the input operands A and B, as 
well as the multiplier's sign. Calculation time can be reduced by 
finding the input operands with exact absolute values. 

In the example, the input operand A is 16-bit and has a 
decimal value of 11761, whereas the input operand B is 16-bit 
and has a decimal value of 2482. A and B's exact measurement 
value is written as (A × B)exact The exact result in binary format 
is 0000 0001 1011 1101 0110 1010 1001 0010 which is 
represented in decimal format as 29 190 802, but using the 

existing method, we get the value as (A × B)Existed in the binary 
format is 0000 0001 1011 1001 0000 0000 0000 0000, the decimal 
format is 28 901 376. The difference between Existed and exact 
values in this situation is 289 426.  

The value of (A × B)Proposed is calculated using the 
approximation technique which is explained in Figure 4, the 
binary format 0000 0001 1011 1001 1111 1111 1111 1111, the 
decimal format is 28 966911. The difference in between the exact 
and proposed is 223 891. The KA and KB values reflect the leading 
one-bit location in the input operands A and B. The measured 
values of KA and KB numbers in this case are 13 and 11, 
respectively. Various (h, t) combinations have a slight 
modification in the numerical example. Various study is being 
done to build a new measurement of approximate multiplier. In 
the Dynamic Segment Method (DSM) [17] design, the input 
operands are trimmed to 'm' bits depends on the location of the 
leading one bit (value of that particular position, i.e., 1,2, …), and 
fixed-width multiplication is implemented on the values, that are 
obtained from truncation operation. While applying this method 
of truncation, the produced output value in most of the cases is 
less than the exact one, resulting in a negative Mean Relative 
Error (MRE). 

When considering digital signal processing applications, strive 
to keep the mean error as low as feasible to achieve a good Signal-
to-Noise Ratio (SNR). The DRUM structure is truncated to yield 
the solution [18]. We seek to bring the MRE value near zero, the 
LSB of the shorter input, which is assigned to the value "1," to 
limit the erroneous outcome. The truncation of the input 
operands is performed in the multiplication stage in the Low 

 

Figure 1. 16-bit TOSAM numerical example of measurement for truncation 
t = 7 and rounding h = 3. 

 

Figure 2. Block diagram of truncated multiplier. 

 

Figure 3. Representation of measured term 1+(YA)t + (YB)t+ (YA)APX +(YB)APX in 
dot diagram with truncation ‘t’ and rounding parameters ’h’ are 7 and 3 
respectively.  
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Energy Truncation-based Approximate Multiplier (LETAM) [19] 
structure, and there is a chance of omitting half of the partial 
products. 

maxARE is specified as maximum absolute relative error 
(considered from relative error RE)  
MRE is specified as mean relative error  
MARE is specified as mean absolute relative error  
VARE is specified as variance of absolute relative error 
NED is specified as normalized error distance  
max_NED is specified as maximum normalized error 
distance 
Comparison of the accuracy of TOSAM against other 

approximation multipliers like DSM, DRUM, LETAM, and U-
RoBA in terms of MRE, maxARE, MARE, VARE, max NED, 
and NED using random vectors [5] is performed on the 
parameters of maxARE, MRE, MARE, VARE, max NED, and 
NED. All these findings are summarised in Table 1. 

EDP is defined as energy-delay product 
PDA is defined as power-area-delay product  
Delay, Power, Area, Energy, EDP, PDA, and MARE of the 

approximation multiplier are calculated and compared with the 
existing multiplier design and is tabulated in Table 2. From the 
data, the proposed modified multipliers show better results than 
the other existing approximation multiplier configurations with 

respect to speed and energy usage while maintaining almost 
identical MARE values. Table 2 shows a comparison between 
DSM, DRUM, LETAM, U-RoBA with the proposed 
measurement approach of TOSAM (3,7) approximate multiplier. 

4. Results and discussions 

The proposed approximation multiplier with output 
measurement of 32-bit truncated based multiplier that produces 
a result that is more approximate than the existing multiplier. 
11761 is the A value, and 2482 is the B value. The exact values 
of A and B are as follows: (A × B)exact value 29 190 802, and the 
Existed of A and B is (A × B)Existed equals 28 901 376. The 
difference between Existed and exact values in this situation is 
289 426. The value of (A × B)Proposed is 28 966911when utilising 
the proposed approximate technique; the difference between 
Proposed and exact is 223 891, indicating that the value is more 
approximate. The output is generated in the next cycle and the 
error value is also shown in Figure 5. 

The Internal structure shows the blocks of the proposed 
approximate multiplier namely Approximate absolute unit AAU, 
Lead One Detector LOD, Truncation Unit TU, Arithmetic Unit 
AU, shifter, sign-set. Also, it represents the flow of data from 
one block to the other and is shown in Figure 6. 

5. CONCLUSION AND FUTURE SCOPE  

Low-energy and area-efficient 16-bit approximation 
multiplier is proposed. Truncation on input operands is 
performed with two different parameters namely truncation ‘t’ 
and rounding ‘h’. The existing 16-bit multiplier with rounding 
and truncation measurement (3,7) shows a measurement error of 
0.4 %. The proposed 16-bit multiplier for the same truncation 
and rounding measurement (3,7) with the measured error of 
0.01 % (the error is less than 1 %). The error is reduced by 
rounding the input operands to the next odd value. The 

Table 1. Representation of various Approximate Multiplier with maxARE, MRE, MARE, VARE, max NED, and NED. 

Architecture 
MaxARE 

(%) 
MRE 
(%) 

MARE 
(%) 

VARE 
(%) 

max NED NED 

DSM(3) [20] 36.00 -16.1 16.10 40.43 0.2344 0.0399 

TOSAM(0,2) [20] 31.25 -9.1 10.90 46.63 0.3125 0.0309 

TOSAM(0,3) [20] 25.00 -3.3 7.61 28.81 0.2500 0.0213 

DRUM(3) [8] 56.25 2.1 11.90 79.96 0.2344 0.0281 

TOSAM(1,5) [20] 13.89 -0.7 3.95 7.60 0.1250 0.0104 

TOSAM(2,6) [20] 6.87 -0.6 2.06 2.00 0.0664 0.0053 

Proposed TOSAM(3,7) 3.65 -0.3 1.05 0.52 0.0342 0.0027 

LETAM(3) [14] 9.72 -4.0 4.00 2.54 0.0859 0.0104 

U-RoBA [15] 11.10 0 2.89 6.37 0.0625 0.0069 

TOSAM(4,8) [20] 1.88 -0.2 0.53 0.13 0.0173 0.0013 

Table 2. Comparisons of Delay, Power, Area, Energy, EDP, PDA, and MARE of the approximate multipliers. 

Architecture 
Delay 
(ns) 

Power 
(mW) 

Area 
(µm2) 

Energy 
(pJ) 

EDP 
(pJ · ns) 

PDA 
(pJ · µm2) 

MARE 
(%) 

TOSAM(0,2) [20] 0.74 0.16 342 0.12 0.09 40 10.9 

TOSAM(0,3) [20] 0.84 0.21 423 0.18 0.15 76 7.6 

DSM(3) [20] 0.97 0.20 344 0.19 0.19 67 16.1 

TOSAM(1,5) [20] 1.00 0.35 532 0.35 0.35 185 4.0 

DRUM(3) [8] 0.88 0.13 257 0.11 0.10 29 11.9 

TOSAM(2,6) [20] 1.00 0.35 532 0.35 0.35 185 2.06 

LETAM(3) [14] 1.16 0.39 608 0.46 0.53 278 4.0 

U-RoBA [15] 1.05 0.55 1438 0.57 0.60 826 2.9 

Proposed TOSAM(3,7) 1.87 0.23 593 0.4 0.748 255 1.05 

 

Figure 4. Example for generation of approximate absolute value with two 
negative numbers.  
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recommended approximation multiplier is scalable and 
outperforms the correct multiplier in regard of speed, area, and 
energy. The proposed approximation multiplier consumes 
0.23 mW which is lesser than the existing approximate 
multipliers. Various types of approximate multipliers are used in 
sharpening the images. In future there is also the possibility of 
using the multiplier and accumulator unit to create an image 
sharpening module, and this may be used to measure the energy 
consumption for various approximate multipliers. Also, in other 
applications, we can use the JPEG technique to compress many 
images, and this can be used for approximation multipliers in the 
discrete cosine transform unit. 
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