Primary calibration of mechanical sensors with digital output for dynamic applications
DOI:
https://doi.org/10.21014/acta_imeko.v10i3.1075Abstract
This article tackles the challenge of the dynamic calibration of modern sensors with integrated data sampling and purely digital output for the measurement of mechanical quantities like acceleration, angular velocity, force, pressure, or torque. Based on the established calibration methods using sine excitation, it describes an extension of the established methods and devices that yields primary calibration results for the magnitude and phase of the complex transfer function. The system is demonstrated with a focus on primary accelerometer calibrations but can easily be transferred to the other mechanical quantities. Furthermore, it is shown that the method can be used to investigate the quality and characteristics of the timing for the internal sampling of such digital output sensors. Thus, it is able to gain crucial information for any subsequent phase-related measurements with such sensors.Downloads
Published
2021-09-30
Issue
Section
Research Papers
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).