Uncertainty assessment for measurement and simulation in selective laser melting: a case study of an aerospace part
DOI:
https://doi.org/10.21014/acta_imeko.v9i4.720Abstract
In this work, the additive manufacturing process selective laser melting is analysed with the aim of realising a complex piece for aerospace applications. In particular, the effect of the manufacturing process and of the following thermal treatments on the dimensions of the workpiece is evaluated. The study is based on a hybrid approach including a simulation of the whole manufacturing process by advanced software packages and the dimensional measurements of the realised pieces taken by a coordinate measuring machine (CMM). The integrated use of simulation and measurements is carried out with the aim of validating the simulation results and of identifying the operational limits of both approaches; this analysis is based on metrological evaluation of the results of both the simulation and the tests, taking into account the uncertainty of the data. In addition, the main causes of uncertainty for the simulation activity and the experimental data have been identified, and the effects of some of them have also been experimentally evaluated. Based on the experimental validation, the simulation seems to predict the absolute displacement of the supports of the piece in a satisfactory way, while it is unable, in the actual configuration, to assess the conformity of the surface to its very tight shape tolerances. Conformity assessment of the surface should be carried out by CMM measurement. Integrated use of simulation and experimental results is expected to strongly improve the accuracy of simulation results for the effective and accurate design and control of the additive manufacturing process, including dimensional control and thermal treatments to mitigate induced thermal stresses.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).