An overview of commercially available Teslameters for applications in modern science and industry
DOI:
https://doi.org/10.21014/acta_imeko.v6i1.312Abstract
The Hall-effect based Teslameters (also called Gaussmeters) are the mostly applied instruments for measuring DC and AC magnetic flux densities in modern science and industry. This paper gives an overview of commercially available Teslameters at the high-end performance level. The Teslameters have been evaluated by following characteristics that are published by suppliers: probe dimensions, magnetic field sensitive volume, accuracy, magnetic resolution, measurement range, frequency bandwidth, temperature coefficient sensitivity, and price/performance ratio.
The Teslameter that best matches the measurement needs in various application fields incorporates a 3-axis integrated Hall probe, analog electronics based on the spinning-current technique, an analog-to-digital converter, an embedded computer, and a touch-screen display. The 3-axis Hall probe is a single silicon chip integrating both horizontal and vertical Hall magnetic sensors and a temperature sensor. The spinning-current eliminates most of the Hall probe offset, low-frequency noise, and the planar Hall voltage. The errors due to the Hall sensor non-linearity and the variations in the probe and electronics temperatures are eliminated by a calibration procedure. The errors due to the angular imperfections of the Hall probe are eliminated by a calibration of the sensitivity tensor of the probe. This Teslameter can measure magnetic field vectors from about 100 nT to 30 T, with the spatial resolution of 100 µm, magnetic resolution ±2 ppm of the range, the accuracy 0.002 % of the range, a temperature coefficient less than 5 ppm/°C, and angular errors less than 0.1°.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).