An investigation into vibration analysis for detecting faults in vehicle steering outer tie-rod
DOI:
https://doi.org/10.21014/actaimeko.v13i1.1742Keywords:
fault detection, steering systems, angular acceleration, simulation, wavelet analysisAbstract
This study presents a novel fault detection method in car gear steering systems, employing MSC Adams and MATLAB simulations to analyze angular acceleration from the outer tie rod. The approach closely mimics real accelerometer data to differentiate between normal and faulty conditions, including wear and obstacle navigation. Emphasis is on noise robustness, utilizing advanced noise injection and denoising techniques. The efficacy of wavelet scattering, discrete wavelet transform (DWT) methods, and classifiers like Support Vector Machines (SVM) and Neural Networks (NN) is extensively evaluated. Among fifteen fault detection methods, the combination of wavelet scattering with Long Short-Term Memory (LSTM) Neural Networks, optimized with Adam tuning, is notably stable across four scenarios. The research highlights the importance of precise feature selection, employing techniques like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE). This research significantly advances the reliability of autonomous driving systems and provides essential insights into fault detection in gear steering systems.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Yousif Alaraji, Sina Alp
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).