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1. INTRODUCTION 

The application of Discrete Wavelet Transform (DWT) and 
Wavelet Scattering in the analysis of vibrational signals in 
dynamic systems has made significant advancements, replacing 
conventional methods such as the Fast Fourier Transform (FFT) 
[1] [2]. These techniques have proven to be robust and effective 
in fault detection and system analysis, especially when combined 
with classifiers like Long Short-Term Memory (LSTM) and 
Support Vector Machines (SVM) [3], [4]. 

Previous studies have extensively explored methodologies for 
fault detection in vehicle suspension systems. One such 
approach utilizes accelerometer sensors on the car body and 
bogies, demonstrating the effectiveness of PCA-based and CVA-
based methods in detecting vertical damper and spring faults [5]. 
Another study conducted a feasibility analysis of vibration-based 
fault diagnosis, introducing an FDI unit trained with a functional 
model-based method. This unit showcased high sensitivity, 
accurate fault estimation, and robustness to noise and 
uncertainties in diagnosing faults within railway vehicle 
suspensions, potentially enhancing safety and performance [6]. A 

novel fault diagnosis method leveraging accelerometer data from 
multiple suspension points was also introduced, demonstrating 
efficiency through comprehensive simulations using a complete 
vehicle benchmark. This method offered an effective fault 
detection solution solely based on accelerometer data [7]. 
Analysing automobile suspension fatigue employed DWT and 
wavelet energy analysis, providing valuable insights into 
evaluating suspension fatigue under varied road conditions and 
advocating the development of real-time monitoring systems to 
enhance suspension reliability [8]. Another technique introduced 
cost-effective fault detection for railway vehicle dampers by 
analysing phase differences in motion during routine train 
operations [9]. A proposal has been made to use continuous 
wavelet transform and Morlet wavelet functions in 
ADAMS/CAR simulations for detecting damper and upper 
damper bushing faults in vehicle suspensions. This approach 
involves observing the changes in natural frequencies and 
corresponding energy amplitudes, which can enhance fault 
detection accuracy and improve vehicle suspension fault 
detection capabilities [10]. 

ABSTRACT 
This study presents a novel fault detection method in car gear steering systems, employing MSC Adams and MATLAB simulations to 
analyze angular acceleration from the outer tie rod. The approach closely mimics real accelerometer data to differentiate between 
normal and faulty conditions, including wear and obstacle navigation. Emphasis is on noise robustness, utilizing advanced noise injection 
and denoising techniques. The efficacy of wavelet scattering, discrete wavelet transform (DWT) methods, and classifiers like Support 
Vector Machines (SVM) and Neural Networks (NN) is extensively evaluated. Among fifteen fault detection methods, the combination of 
wavelet scattering with Long Short-Term Memory (LSTM) Neural Networks, optimized with Adam tuning, is notably stable across four 
scenarios. The research highlights the importance of precise feature selection, employing techniques like Principal Component Analysis 
(PCA), Linear Discriminant Analysis (LDA), and Recursive Feature Elimination (RFE). This research significantly advances the reliability of 
autonomous driving systems and provides essential insights into fault detection in gear steering systems. 
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Our research focuses on improving fault detection 
methodologies for road obstacles and suspension systems 
through the utilization of advanced machine learning models, 
specifically Long Short-Term Memory (LSTM) networks, Neural 
Networks (NN), and Support Vector Machines (SVM). Our 
focus lies in showcasing the efficacy of SVM and wavelet 
scattering techniques in capturing nuanced dependencies 
inherent in sequential data. Additionally, we underscore the 
robust mathematical underpinnings of these models. 

Our investigation involves a comparative analysis between 
LSTM networks and SVM models, considering factors such as 
complexity, feature engineering, scalability, interpretability, 
performance, fault detection accuracy, and processing time. 
These analyses are performed on a robust hardware setup 
consisting of an Intel(R) Core (TM) i7-7820HK CPU and an 
NVIDIA GeForce GTX 1080 GPU to ensure comprehensive 
evaluations. 

To comprehensively analyse the data, we employ techniques 
such as discrete wavelet transform and wavelet scattering using 
MATLAB, enabling a holistic approach to explore fault detection 
across diverse road obstacles. 

The study consists of two distinct tests: Road Obstacle 
Classification across five levels in a noise-free environment; 
Road Type and Signal Condition Classification in-volving 
scenarios with noise and subsequent denoising processes; 
Filtering and meth-od selection to identify the top-performing 
methods in noisy conditions; and Evaluation of denoising 
methods to refine result precision while considering fault 
detection accuracy and processing time. 

Additionally, we aim to extract features from signals 
generated by MSC Adams, simulating varying degrees of loose 
joints in tie rods and incorporating noise using discrete wavelet 
transform and wavelet scattering. Subsequently, classifiers such 
as SVM and LSTM, optimized through various tuners, 
optimizers, and feature selectors, will be employed to classify 
these signals based on the degree of loosening, considering fault 
detection accuracy and processing time. 

The analysis of results will determine the most suitable 
method for our signals, significantly contributing to the 
advancement of fault detection techniques in suspension 
systems. Following these experiments, we will meticulously 
prepare the dataset for feature extraction and thoroughly 
evaluate fifteen fault detection models. 

2. MATERIALS AND METHODS 

2.1. Simulation Setup 

The study utilized MSC Adams and MATLAB to simulate a 
front-wheel-drive sedan with ten interconnected systems. The 
primary focus was on the front Macpherson suspension system, 
mainly the left outer tie rod (Figure 1).  

Signals from this component were analysed extensively.  
The car model was integrated into MSC Adams for 

simulations on a straight road for 20 seconds at 20 km/hr. two 
specific tests were conducted, examining the angular acceleration 
of the left outer tie rod along the X-axis under different 
scenarios: 

1. Roughness Obstacle Scenario (Figure 2) - Depicting an 
85-meter Uneven Road Sur-face and the Corresponding 
Output Angular Acceleration Signal. 

2. Sine Road Scenario Replication - Displaying an 80-meter 
Sine Wave-like Obstacle and Corresponding Output 
Signal. 

3. Pothole Obstacle Scenario: Emulated a 10-meter pothole 
on the road. 

4. Bump Obstacle Scenario - Demonstrating a 2-meter 
Bump with a 7 cm Maximum Height and the 
Corresponding Output Angular Acceleration Signal. 

Angular acceleration data were meticulously collected and 
processed for each scenario. (Figure 2) depicts the rough road 
and the collected signal, and the same approach was applied to 
the other scenarios, resembling real-life accelerometer readings, 
resulting in four distinct signals. 

After the simulation, which lasted for 20 seconds and resulted 
in the extraction of 1000 instances from each signal, the data in 
.tab format was transferred to MATLAB for in-depth analysis. 
This process encompassed signal preprocessing, data labelling, 
feature extraction, and signal classification. Utilizing MATLAB's 
robust modelling tools, the analysis was enhanced, facilitating 
effective interpretation and visualization of the results. This 
comprehensive analytical approach was crucial in elucidating the 
effects of various road obstacles on the angular acceleration of 
the left outer tie rod in the front Macpherson suspension system. 

2.2. Data Preparation Operational Modes 

2.2.1. First Mode 

In this mode, 400 signals are generated, exhibiting a 
fluctuation range of 0 to 0.002 for normal signals. Deliberate 

 

Figure 1. Detailed Examination of Sedan Car's Outer Left Tie Rod via MSC Adams Simulation. 
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faults ranging from 0.005 to 2 degrees are introduced across 
various road type, creating four distinct fault levels, each 
comprised of 100 signals. These signals undergo meticulous 
categorization, labelling, and shuffling and are then divided into 
80 % for training and 20 % for testing. Following categorization,  
the data is processed for feature extraction. Fifteen fault 
detection models under-go evaluation, with the most accurate 
ones subjected to a two-step testing process involving the 
introduction of noise to simulate grainy road conditions and  

subsequent denoising testing to gauge their resilience and 
effectiveness. 

2.2.2. Second Mode 

This mode represents healthy and worn conditions and 
employs 400 healthy signals per road type. It simulates wear 
ranging from no wear to 0.001 and faults spanning from 0.005 to 
2 degrees. These signals are appropriately labelled, shuffled, and 
divided into training and testing sets. The dataset is then readied 
for feature extraction. Fifteen fault detection models undergo 
evaluation across two scenarios: Signals affected by added noise 
mimicking a grainy road surface, and signals pre-processed 
through denoising before testing, providing a comprehensive 
assessment of their performance under different conditions. 

2.3. Features Extraction 

2.3.1. Discrete wavelet transformation DWT 

The Discrete Wavelet Transform (DWT) is a versatile 
mathematical technique employed in image processing, signal 
compression, and feature extraction [11]. Unlike the Fourier 
Transform, DWT dissects data into different scales using 
wavelets [12], specifically using the Daubechies 4 (db4) wavelet 
in this instance with a decomposition level of 5 (Figure 3), 
exemplifying its application on the rough road signal.  
The DWT utilizes a filter bank with low-pass (LPF) and high-
pass filters (HPF) to selectively capture low-frequency and high-
frequency components of the signal [13], followed by down 
sampling. 
The core equation for DWT involves the wavelet function: 

𝐷𝑊𝑇𝜑(𝑗, 𝑘) = ∫ 𝑠(𝑡) 𝜑𝑗,𝑘
∗ (𝑡)

∞

−∞

 d𝑡. (1) 

The Discrete Wavelet Transform 𝐷𝑊𝑇𝜑(𝑗, 𝑘) assesses the 

correlation between a signal 𝑠(𝑡) and a transformed wavelet 

function 𝜑𝑗,𝑘
∗ (𝑡) that is both scaled and shifted across time. This 

computation reveals the signal's energy or information content 

at specific scales (𝑗) and time positions (𝑘) in signal analysis. The 

function 𝜑𝑗,𝑘
∗ (𝑡)  is derived from basic wavelets ϕ and ψ(0), 

providing a versatile tool to analyse signals across various scales 
and time points in signal processing. 

a)  

b)  

Figure 2. a) Roughness Road Obstacle Scenario, b) Roughness Road: Left Tie-
Rod Angular Acceleration Signal. 

 

Figure 3. Discrete Wavelet Five Levels (Wavelet Db4). 
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The hierarchical structure of the DWT allows for Multi-
resolution Analysis (MRA) at multiple scales, representing 
different resolutions of the signal [14]. In a 5-level DWT with the 
'db4' wavelet applied to a signal of length 1000, the estimated 
number of coefficients extracted from each level are as follows 
[12]: Level 1 has 503 coefficients, Level 2 has 251 coefficients, 
Level 3 comprises 125 coefficients, Level 4 includes 62 
coefficients, and Level 5 consists of 31 coefficients (Figure 3). 
The total number of features (wavelet coefficients) extracted 
from each signal after the 5-level DWT is approximately 1003, 
encompassing both detail and approximation coefficients from 
all levels. 

2.4. Wavelet Scattering  

Wavelet scattering, akin to a deep convolutional network, 
extracts low-variance features from time series and images, 
emphasizing translation invariance and resilience to time warping 
[15]. Effective in classification, it dissects signals into scales and 
orientations, excelling in diverse signal analyses and texture 
classification, including electromagnetic signals [16]-[17]. The 
method decomposes signals into scales and orientations via 
wavelet operations, providing stable, translation-invariant 
representations. In a specific application, 20 invariant features 
yield 588 features per signal, enabling detailed analysis. In 
Continuous Wavelet Transform (CWT), first-order scattering 
coefficients involve 'temporal averaging,' crucial for stability 
[18],[19]. (Refer to Figure 4), demonstrating its usage on the 
signal from the rough road. 

The wavelet scattering transform, denoted as 𝑆𝑚, involves a 
strategic process to ensure stability against time-warping 
deformations and introduces time-shift variance: 

𝑆𝑚𝑥(𝑡, 𝝀𝟏, 𝝀𝟐, … , 𝝀𝑚) = |𝒙 ∗ 𝜑𝝀1| ∗ … | ∗ 𝜑𝝀𝒎| ∗ ∅ . (2) 

Here, 𝒙 is the input signal, 𝜑𝝀𝒊 represents wavelet functions at 

different scales 𝝀𝑖 , and 𝜑 denotes the low-pass filter used for 
averaging after the convolution with the m-th order wavelets. 

The process captures information across multiple scales and 
orientations, preserving energy between time and frequency 
domains [18]. 

2.5. Classifiers 

Support Vector Machines (SVM) and Neural Networks (NN) 
are employed in this research to develop a fault detection and 
classification system for a vehicle's tie rod - a critical steering 
component. The goal is accurate detection and classification of 
tie rod faults, crucial for ensuring vehicle safety and performance. 

1. Classifying Four Fault Levels: SVM and NN are used to 
categorize tie rod faults into four levels, aiding in targeted 
maintenance actions based on fault severity. Detailed 
classification provides a comprehensive understanding of 
the tie rod's condition (Figure 5). 

2. Detecting 'Faulty' or 'Normal' Conditions: SVM and NN 
are employed to discern tie rod conditions as 'faulty' or 
'normal' when encountering various road obstacles like 
sinewave, grid, pothole, and bump obstacles. This 
analysis helps identify abnormalities based on tie rod 
responses (Figure 6). 

 

Figure 4. Wavelet Scattering Time-Frequency Convolution Process 

 

Figure 5. Four Faulty Levels Classification 



 

ACTA IMEKO | www.imeko.org March 2024 | Volume 13 | Number 1 | 5 

2.5.1. Support Vector Machines (SVM)  

Support Vector Machines (SVM) are a powerful tool for 
classification and regression tasks, with the ability to handle 
nonlinear data through kernelization [20]. The SVM 
kernelization equation is commonly represented as: 

𝑓(𝑥) = 𝑤𝑇  𝑘(𝑥, 𝑥′) + 𝑏 = 0 . (3) 

Here, 𝑤 is the weight vector, which is a linear combination of 

the support vector. The kernel function is denoted by 𝑘(𝑥, 𝑥′), 
and it implicitly defines the mapping to the higher-dimensional 
space, capturing the essence of kernelization. and the bias term 
b contributes to the decision boundary in this transformed space. 
In the context of SVM, kernelization plays a crucial role in 
transforming data into a higher-dimensional space using 
functions like polynomial, Gaussian, or sigmoid kernels. This 
technique is particularly useful for addressing nonlinear patterns 
in data [20]. 

The research implemented Support Vector Machines (SVM) 
using MATLAB, incorporating specific hyperparameters such as 
Box Constraint and Kernel Scale for optimization. A systematic 
exploration of these parameters was conducted, as depicted in 
(Figure 7), to enhance overall performance. It's crucial to 
emphasize that the adjustment of these hyperparameters aims to 
fine-tune the SVM model, leading to improved accuracy and 
generalization. This methodological approach is applied 
specifically to enhance tie rod fault detection and classification 
within the scope of the research. 

2.5.2. Long Short-Term Memory (LSTM)  

Long Short-Term Memory (LSTM) networks are a specialized 
type of Recurrent Neural Networks (RNNs) designed for 
processing sequential data while addressing the challenge of 
capturing long-term dependencies [21].  

In this project, LSTM networks were employed to proficiently 
model sequential data through MATLAB. The LSTM 
configuration included 1500 hidden units, adept at capturing 
intricate temporal patterns. The training process spanned 170 
epochs, employing a batch size of 170 to strike a balance between 
learning efficiency and computational resources. To mitigate 
overfitting, a validation strategy was implemented, evaluating the 
model every 30 epochs. 

The LSTM architecture was specified using a sequence input 
layer and an LSTM layer with 1500 hidden units, complemented 
by additional layers for classification. The 'adam' optimizer was 
chosen for its effectiveness during training. 

The training was orchestrated via the trainNetwork function, 
incorporating the training features (TrainFeatures) and 
corresponding labels (YTrain). Post-training, predictions on the 
test set were generated using the classify function. 

These MATLAB implementations effectively optimized the 
LSTM network for the complexity of the sequential data, 
showcasing its prowess in accurately modelling and predicting 
intricate sequences in the project. 

3. RESULTS 

3.1. Test 1: Road Obstacle Fault Detection in Noisy Environments 

In our initial road obstacle fault detection test, we rigorously 
examined 15 diverse methods in a noisy environment, classifying 
each obstacle into five fault levels, including the normal 
condition. The primary goal was to identify fault levels for 
Sinewave, Grid, Pothole, and Bump obstacles. Findings from the 
noisy environment, summarized in Table 1, provided valuable 
insights. Notably, the Wavelet Scattering SVM PCA method 
exhibited exceptional performance with a mean accuracy of 
99.1 %, emphasizing its robustness in detecting fault levels in 
noisy conditions The assessment shed light on the trade-offs 
between detection accuracy and operational efficiency. Some 
methods, such as Wavelet Scattering SVM Tuned and DWT with 
SVM, also demonstrated strong performance in the test, albeit 
with a slight increase in processing time. This underscores the 
importance of striking a balance between accuracy and efficiency 
in road safety applications, especially when discerning fault levels 
for different obstacles. 

3.2. Test 2: Road Obstacle Fault Detection in Denoised 
Environments 

Continuing our investigation, we focused on assessing road 
obstacle detection under denoised conditions, with the goal of 
identifying the fault level for each obstacle. Using the same set 
of 15 methods and leveraging MATLAB's “wdenoise” function, 
we aimed to understand how denoising impacted the accuracy 
and efficiency of each method across different obstacles and fault 
levels, including the normal condition. Table 2 presents the 

 

Figure 6. Four Faulty Levels Classification 

 

Figure 7. Objective Function Modelling of a faulty and healthy signal for each 
road type. 
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results of the evaluation in the denoised environment. The 
Wavelet Scattering SVM PCA method continued to shine, 
maintaining top-tier accuracy post-denoising in accurately 
identifying the fault level for various obstacles, including the 
normal condition. This finding underscores the model's 
robustness, demonstrating its capability to deliver consistent 
performance even after denoising. However, it's important to 
note that certain methods, such as Wavelet Scattering SVM 
Tuned RFE and Tuned, exhibited improvement after denoising 
at the expense of increased processing time. This observation 
emphasizes the delicate balance required in road safety 
applications, where accurately identifying the fault level for 
different obstacles remains a critical objective. 

3.3. Test 3: Road Obstacles and Health Condition Classification in 
Noisy Environments 

The third test aimed to comprehensively classify road 
obstacles and signal conditions (healthy or faulty) under noisy 
conditions. The overarching objective was to maximize accuracy 
while minimizing processing time. The evaluation encompassed 
diverse noisy scenarios, employing 15 different methods to 
classify all previously identified obstacles. The results, as outlined 

in Table 3, showcased the Wavelet Scattering RNN ADAM 
model, which maintained a high mean accuracy of 97.8% with a 
relatively low standard deviation. The Wavelet Scattering RNN 
ADAM model displayed outstanding performance and 
consistency in noisy conditions, essential for effective road safety 
applications. Test 3 outcomes emphasized the importance of 
accurate classification for road types and signal conditions in 
noisy environments. The model reliably navigated obstacles and 
signals in noisy conditions, showcasing robust performance. 

3.4. Test 4: Road Obstacles and Health Condition Classification in 
Denoised Environments 

The fourth test was dedicated to the classification of road 
obstacles and signal conditions (healthy or faulty) in denoised 
conditions. Mirroring the objectives of Test 3, the goal was to 
maximize accuracy while minimizing processing time. The 
evaluation spanned various denoised scenarios, employing the 
same 15 methods across all obstacles. The results, presented in 
Table 4, identified the Wavelet Scattering SVM Tuned LDA 
model as a top performer with a mean accuracy of 98.4%. 
Increased processing time impacted road safety systems, 
highlighting the accuracy-time trade-off. Test 4 emphasized 

Table 1. First Test Method Performance Summary (With Noises). 

Model Name 
Number of  

Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

CI Lower 
Accuracy 

(%) 

CI Upper 
Accuracy 

(%) 

Mean 
Time (s) 

Std Time 
(s) 

CI Lower 
Time (s) 

CI Upper 
Time (s) 

Wavelet Scattering SVM PCA 5 Folds 99.1 0.144 98.9 99.4 11 1 9 13 

DWT SVM 1 Iteration 95.0 2.16 91.6 98.4 9 4 3 15 

Wavelet Scattering SVM Tuned 20 Evaluations 95.0 1.41 92.7 97.3 403 62 304 503 

Wavelet Scattering SVM CV SRE 5 Folds 94.9 2.66 90.6 99.1 11 1 9 13 

Wavelet Scattering RNN ADAM 170 Epochs 94.8 1.50 92.4 97.1 53 3 49 58 

Wavelet Scattering SVM Tuned SRE 20 Evaluations 94.5 1.29 92.4 96.6 183 75 65 302 

DWT SVM Tuned 20 Evaluations 94.3 1.26 92.2 96.3 382 346 169 932 

Wavelet Scattering SVM CV 5 Folds 94.3 1.55 91.8 96.7 22 20 10 54 

Wavelet Scattering RNN 170 Epochs 93.8 2.63 89.6 97.9 59 4 52 66 

Wavelet Scattering SVM Tuned RFE 20 Evaluations 93.0 1.41 90.7 95.3 123 14 100 145 

Wavelet Scattering SVM CV RFE 5 Folds 91.1 0.625 90.1 92.1 13 1 12 15 

DWT SVM SRE Tuned 20 Evaluations 91.0 2.94 86.3 95.7 487 403 154 1130 

Wavelet Scattering SVM CV LDA 5 Folds 77.0 5.72 67.9 86.1 9 1 8 10 

Wavelet Scattering SVM Tuned LDA 20 Evaluations 68.0 7.16 56.6 79.4 83 2 79 87 

DWT Neural Network 200 Epochs 54.0 6.00 44.5 63.5 10 9 5 24 

Table 2. Second Test Method Performance Summary (Denoised). 

Model Name 
Number of  

Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

CI Lower 
Accuracy 

(%) 

CI Upper 
Accuracy 

(%) 

Mean 
Time (s) 

Std Time 
(s) 

CI Lower 
Time (s) 

CI Upper 
Time (s) 

Wavelet Scattering SVM PCA 5 Folds 97.9 2.750 93.5 100.0 11 7 1 22 

Wavelet Scattering SVM Tuned RFE 20 Evaluations 97.6 1.110 95.9 99.4 91 16 65 116 

Wavelet Scattering SVM Tuned 20 Evaluations 97.3 0.655 96.2 98.3 565 368 20 1150 

Wavelet Scattering SVM Tuned SRE 20 Evaluations 96.0 0.816 94.7 97.3 146 25 107 185 

Wavelet Scattering RNN ADAM 170 Epochs 96.0 2.000 92.8 99.2 53 1 51 55 

Wavelet Scattering SVM CV RFE 5 Folds 94.8 0.315 94.3 95.3 13 1 11 14 

Wavelet Scattering RNN 170 Epochs 94.5 0.577 93.6 95.4 54 1 52 56 

DWT SVM 1 Iteration 94.5 1.290 92.4 96.6 5 2 2 9 

DWT SVM Tuned 20 Evaluations 93.5 3.700 87.6 99.4 361 189 61 661 

Wavelet Scattering SVM CV SRE 5 Folds 93.4 0.903 92.0 94.9 12 5 3 20 

Wavelet Scattering SVM CV 5 Folds 93.3 0.772 92.1 94.5 18 8 5 31 

DWT SVM SRE Tuned 20 Evaluations 90.5 2.080 87.2 93.8 561 444 145 1270 

Wavelet Scattering SVM CV LDA 5 Folds 84.9 10.200 68.7 100.0 8,5 0,5 8 9 

DWT Neural Network 200 Epochs 82.0 3.460 76.5 87.5 247 41 182 311 

Wavelet Scattering SVM Tuned LDA 20 Evaluations 73.3 10.600 56.4 90.1 84 2 81 86 
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precise classification in denoised conditions, with the Wavelet 
Scattering SVM Tuned LDA model showcasing high accuracy, 
emphasizing the balance between precision and efficiency in real-
world applications. 

4. DISCUSSION 

This study's evaluation of road obstacle detection methods 
encompassed various signal conditions, noise scenarios, and 
denoising techniques, targeting enhancements in autonomous 
driving and road safety. A key finding was the exceptional 
performance of "Wavelet Scattering SVM PCA" in fault levels 
detection, paralleling its effectiveness in vibration fault diagnosis 
for bearings at variable speeds [22]. Additionally, the 
combination of wavelet scattering with LSTM proved effective 
in classifying unbalanced and bowed rotors [23], while "Wavelet 
SVM Tuned (LDA)" showed promise in mixed signal 
environments, akin to its application in bearing vibration fault 
detection [24]. 

In noisy conditions, "Wavelet Scattering SVM Tuned" 
demonstrated robustness, particularly in detecting unbalanced 
and bowed rotors [23], underscoring the significance of careful 

feature selection. Across all tests, "Wavelet Scattering LSTM 
Tuned" emerged as the most stable method in our research, 
highlighting the importance of tailored feature selection and 
adaptive techniques for effective road obstacle detection in 
autonomous driving systems. 

Future research should focus on integrating LiDAR with 
accelerometers, combined with wavelet scattering and 
classification techniques. Inspired by the use of LiDAR in 
earthquake detection [25] and the incorporation of finite element 
analysis with vibration fault detection in defected ball bearings 
[26], this approach could yield more precise detection results. 
Investment in advanced hardware and comparative studies of 
machine-learning algorithms are also recommended. 

Implementing these recommendations enhances fault 
detection accuracy and practicality, benefiting the automotive 
industry in manufacturing, fleet management, road safety, and 
aftermarket services. This contributes to improved safety, 
reduced maintenance costs, and heightened operational 
efficiency. 

Table 3. Third Test: Summary of Method Performance Metric (With Noise). 

Model Name 
Number of  

Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

CI Lower 
Accuracy 

(%) 

CI Upper 
Accuracy 

(%) 

Mean 
Time (s) 

Std Time 
(s) 

CI Lower 
Time (s) 

CI Upper 
Time (s) 

Wavelet Scattering RNN ADAM 170 Epochs 97.8 0.776 95.9 99.7 360 79 164 556 

DWT Neural Network 200 Epochs 97.7 0.261 97.0 98.3 41 6 25 57 

Wavelet Scattering SVM Tuned SRE 20 Evaluations 97.5 0.304 96.7 98.3 2970 530 1660 4290 

Wavelet Scattering SVM CV 5 Folds 97.2 0.846 95.1 99.3 86 17 44 128 

Wavelet Scattering SVM CV SRE 5 Folds 97.1 0.463 95.9 98.2 91 12 62 119 

Wavelet Scattering SVM CV RFE 5 Folds 96.5 0.087 96.2 96.7 73 13 42 104 

Wavelet Scattering SVM Tuned RFE 20 Evaluations 96.3 0.135 95.9 96.6 2010 406 999 3010 

Wavelet Scattering SVM PCA 5 Folds 95.8 0.610 94.3 97.3 81 14 46 116 

Wavelet Scattering SVM Tuned LDA 20 Evaluations 95.6 0.367 94.7 96.5 224 42 121 328 

Wavelet Scattering RNN 170 Epochs 95.5 0.685 93.7 97.2 386 56 248 524 

Wavelet Scattering SVM CV LDA 5 Folds 95.4 0.200 94.9 95.9 62 12 32 92 

Wavelet Scattering SVM Tuned 20 Evaluations 95.3 0.735 93.5 97.1 2630 483 1430 3830 

DWT SVM Tuned 20 Evaluations 95.0 0.598 93.5 96.5 4590 486 3380 5800 

DWT SVM SRE Tuned 20 Evaluations 93.1 0.304 92.4 93.9 4420 836 2340 6500 

DWT SVM 1 Iteration 92.2 0.358 91.3 93.1 194 38 99 290 

Table 4. Fourth Test: Summary of Method Performance Metric (Denoised). 

Model Name 
Number of  

Training Cycles 

Mean 
Accuracy 

(%) 

Std 
Accuracy 

(%) 

CI Lower 
Accuracy 

(%) 

CI Upper 
Accuracy 

(%) 

Mean 
Time (s) 

Std Time 
(s) 

CI Lower 
Time (s) 

CI Upper 
Time (s) 

Wavelet Scattering SVM Tuned LDA 20 Evaluations 98.4 0.348 97.6 99.3 219 46 104 334 

Wavelet Scattering SVM Tuned 20 Evaluations 98.4 0.481 97.2 99.6 3580 602 2080 5080 

Wavelet Scattering SVM Tuned SRE 20 Evaluations 98.3 0.180 97.8 98.7 3400 691 1680 5110 

Wavelet Scattering SVM Tuned RFE 20 Evaluations 98.3 0.289 97.6 99.0 3760 569 2340 5170 

Wavelet Scattering RNN ADAM 170 Epochs 98.3 0.382 97.3 99.2 363 18 317 408 

DWT Neural Network 200 Epochs 98.1 0.499 96.9 99.4 44 3 36 52 

Wavelet Scattering SVM CV SRE 5 Folds 97.8 0.450 96.7 98.9 123 19 77 169 

Wavelet Scattering SVM CV LDA 5 Folds 97.7 0.456 96.6 98.9 60 12 29 91 

Wavelet Scattering RNN 170 Epochs 97.7 0.576 96.2 99.1 355 14 321 389 

Wavelet Scattering SVM CV RFE 5 Folds 97.4 0.170 97.0 97.8 71 11 43 99 

Wavelet Scattering SVM CV 5 Folds 97.1 0.551 95.8 98.5 114 22 59 168 

DWT SVM Tuned 20 Evaluations 97.0 0.439 95.9 98.1 4420 861 2280 6560 

DWT SVM SRE Tuned 20 Evaluations 95.9 0.421 94.9 97.0 1560 269 894 2230 

Wavelet Scattering SVM PCA 5 Folds 92.9 0.520 91.6 94.2 551 101 299 803 

DWT SVM 1 Iteration 92.5 0.410 91.5 93.5 190 28 120 260 
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5. CONCLUSION 

The research work focuses on detecting suspension failure in 
a simulated car's steering system, a critical factor causing road 
accidents. It employs simulation, data analysis, signal processing, 
and classification techniques. 

Key findings encompass simulating wear in the outer tie rod, 
utilizing methods like wavelet scattering and discrete wavelet 
transform for feature extraction, and employing Support Vector 
Machines (SVM) and Neural Networks (NN) for signal 
classification. Across all the tests conducted, "Wavelet 
Scattering" stood out for feature extraction, while "LSTM" 
(Long Short-Term Memory) networks demonstrated high 
efficiency in classification. Moreover, the study notably 
highlighted the proficiency of "Wavelet Scattering LSTM Tuned" 
in ensuring accurate classification in diverse scenarios. 

The study emphasizes the necessity for diverse datasets and 
real-world testing to enhance fault detection accuracy while 
acknowledging limitations in the simulated environment. 

This research is pivotal for enhancing automotive safety by 
providing methodologies relevant to real-world scenarios, paving 
the way for advancements in steering system fault detection and 
overall road safety. 

In summary, the research emphasizes tailored approaches 
based on data characteristics and noise levels for effective road 
obstacle detection. It aims to reduce suspension-related accidents 
and advance autonomous driving technology for safer roads. 

REFERENCES 

[1] A. A. Al Taee, R. N. Khushaba, T. Zia, A. Al–Jumaily, The 
Effectiveness of Narrowing the Window size for LD & HD EMG 
Channels based on Novel Deep Learning Wavelet Scattering 
Transform Feature Extraction Approach, 44th Annual 
International Conference of the IEEE, 2022, pp. 3698–3701. 
DOI: 10.1109/EMBC48229.2022.9871473  

[2] D. L. Rani, M. Bharathi, N. Padmaja, Performance Comparison of 
FFT, DCT, DWT and DDDWT-OFDM in Rayleigh Channel, 
2019 International Conference on Smart Systems and Inventive 
Technology (ICSSIT), 2019, pp. 392–394.   
DOI: 10.1109/ICSSIT46314.2019.8987953  

[3] F. Liu, Sh. Xia, Sh. Wei, L. Chen, Y. Ren, X. Ren, Zh. Xu, S. Ai, 
Ch. Liu, Wearable electrocardiogram quality assessment using 
wavelet scattering and LSTM, Front Physiol, vol. 13, 2022, p. 
905447. 
DOI: 10.3389/fphys.2022.905447  

[4] E. S. Fonseca, R. C. Guido, A. C. Silvestre, J. C. Pereira, Discrete 
wavelet transform and support vector machine applied to 
pathological voice signals identification, 7th IEEE International 
Symposium on Multimedia (ISM’05), 2005, pp. 5.  
DOI: 10.1109/ISM.2005.50  

[5] X. Wei, L. Jia, H. Liu, A comparative study on fault detection 
methods of rail vehicle suspension systems based on acceleration 
measurements, Vehicle System Dynamics, vol. 51, no. 5, 2013, pp. 
700-720.  
DOI: 10.1080/00423114.2013.767464  

[6] J. S. Sakellariou, K. A. Petsounis, S. D. Fassois, Vibration based 
fault diagnosis for railway vehicle suspensions via a functional 
model-based method: A feasibility study, Journal of Mechanical 
Science and Technology, vol. 29, no. 2, Nov. 2015, pp. 471–484.  
DOI: 10.1007/s12206-015-0107-0  

[7] S. Yin, Z. Huang, Performance Monitoring for Vehicle 
Suspension System via Fuzzy Positivistic C-Means Clustering 
Based on Accelerometer Measurements, IEEE/ASME 
Transactions on Mechatronics, vol. 20, no. 5, Nov. 2015, pp. 
2613–2620. 
DOI: 10.1109/TMECH.2014.2358674  

[8] A. A. A. Rahim, S. Abdullah, S. S. K. Singh, M. Z. Nuawi, Selection 
of the optimum decomposition level using the discrete wavelet 
transform for automobile suspension system, Journal of Mech. 
Science and Technology, vol. 34, no. 1, Nov. 2020, pp. 137–142.  
DOI: 10.1007/s12206-019-1213-1  

[9] T. Kojima, Y. Sugahara, Fault Detection of Vertical Dampers of 
Railway Vehicle Based on Phase Difference of Vibrations, vol. 54, 
no. 3. 2013, pp. 139-144.  
DOI: 10.2219/rtriqr.54.139  

[10] S. Azadi, A. Soltani, Fault detection of vehicle suspension system 
using wavelet analysis, Vehicle System Dynamics, vol. 47, no. 4, 
Nov. 2009, pp. 403–418.  
DOI: 10.1080/00423110802094298  
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