Evaluation of spatial patterns accuracy in identifying built-up areas within risk zones using deep learning, RGB aerial imagery, and multi-source GIS data
DOI:
https://doi.org/10.21014/actaimeko.v12i4.1708Keywords:
building identification, accuracy spatial patterns assessment, remote sensing, RGB images, deep learning, U-net segmentation, geographic transferability, landslide risk, spatial planningAbstract
In the presence of natural disasters that increasingly affect urban centers, innovative methodologies that can support all the subjects and bodies involved in the disaster management system are increasingly important. This task can be enhanced in urban settings by automatically assessing at-risk buildings through satellite and aerial imagery. However, creating and implementing models with robust generalization capabilities is crucial to achieving this goal. Based on these premises, the authors proposed a deep learning approach utilizing the U-Net model to map buildings within known landslide-prone areas. They trained and validated the U-Net model using the Dubai Satellite Imagery Dataset. The model's prediction accuracy in adapting its results to urban environments in Italy, different from those involved in the training and validation stages, was tested using natural color orthoimages and diverse geographic information system (GIS) data sources.
The outcomes indicate that the model's predictions are better in contexts with denser urban fabric. The level of accuracy in dispersed urban shapes worsens as building footprints cover a small portion of the total image area. Overall, the results demonstrate that the suggested methodology can effectively identify buildings in landslide risk zones, demonstrating noteworthy adaptability, making the proposed platform a tool that can be instrumental for decision-makers and urban planners in pre-disaster and post-disaster stages.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Alessandro Vitale, Carolina Salvo, Francesco Lamonaca
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).