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1. INTRODUCTION 

Automatically delineating the footprints of buildings and 
infrastructure from high-resolution imagery is paramount, 
particularly in urban planning applications, with a strong focus 
on disaster management planning [1], [2]. Identifying accurately 
buildings and infrastructure is critical for monitoring urban 
development [3]-[5]. 

In contemporary literature, developing dependable and 
precise methods for extracting buildings has emerged as a 
prominent and intricate research concern, garnering increased 
attention [6]-[9]. As a discipline, remote sensing provides 
invaluable insights to researchers and authorities grappling with 
this challenge. 

Over the past few years, numerous methodologies for 
extracting buildings and infrastructure have been developed and 
applied, encompassing parametric and non-parametric classifiers, 
shadow-based techniques, edge-based approaches, and object-
based methods [10]-[12]. Before Deep Learning (DL) emerged, 
the remote-sensing research community transitioned its focus 
away from neural networks. Instead, it focused on methods like 
support vector machines (SVM) and ensemble classifiers, 
including random forest (RF), for tasks like image classification. 
For instance, Belgiu and Drăguţ [13] employed and compared 
supervised and unsupervised multi-resolution segmentation 
methodologies in conjunction with RF classification to extract 
buildings from high-resolution satellite images. The comparison 
of image object geometries was conducted using empirical 
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discrepancy methods, also known as supervised segmentation 
evaluation, to gauge the geometric disparities between the 
generated image objects and a set of reference data. The 
employed global accuracy metrics are the area fit index (AFI), 
quality rate (Qr), and Root Mean Square (Dij). These metrics take 
into consideration the entirety of the imagery for evaluation 
purposes. Specifically, the Dij metric combines two key aspects: 
under-segmentation (USeg) and over-segmentation (OSeg) 
metrics. It evaluates the degree of "closeness" between the image 
objects and the reference data. OSeg occurs when the image 
objects are smaller than the reference objects, while USeg occurs 
when the image objects are larger. Following a revised object-
based segmentation approach, Chen et al. [14] identified buildings 
using three machine-learning classifiers (AdaBoost, RF, and SVM). 
To assess the automatically detected results by overlapping them 
with the ground-truth map, these regions are categorized into four 
groups: True Positives (TP), False Positives (FP), True Negatives 
(TN), and False Negatives (FN). Accuracy, Precision, Recall, 
Specificity, and F1-score have been employed as metrics to gauge 
the overall model performance. 

Starting in 2014, the remote-sensing community has 
redirected its focus toward DL models, which can autonomously 
acquire features directly from unprocessed satellite imagery. This 
shift eliminates the necessity for manual feature engineering and 
the processing of extensive data volumes. DL technology has 
found widespread application in remote sensing in recent years. 
Its potential lies in its capacity to surmount the limitations of 
conventional classification algorithms. 

The Convolutional Neural Network (CNN) is the primary 
choice among various deep learning technologies for computer 
vision tasks [15]. Starting in 2014, algorithms based on CNN for 
semantic segmentation [16] have found applications in numerous 
pixel-wise analysis tasks concerning remote sensing imagery. 
Algorithms like convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), and deep neural networks (DNNs) have 
been demonstrated to deliver superior outcomes in remote sensing 
imagery classification and segmentation compared to conventional 
machine learning techniques [17]-[20]. Among the CNN-based 
network architectures, the U-Net model stands out due to its 
unique U-shaped design, the inclusion of skip connections, and 
multi-resolution feature integration. These attributes bolster its 
performance in semantic segmentation tasks, facilitating precise 
and comprehensive land cover classification. Consequently, U-Net 
has become a preferred choice for mapping and monitoring 
applications [21]-[26]. 

Furthermore, in recent times, by harnessing the substantial 
potential of remote sensing (RS), geographic information 
systems (GIS), and advanced deep learning techniques such as 
U-Net, researchers and professionals can capitalize on the unique 
advantages of each component to enhance the precision and 
effectiveness of land cover mapping and analysis across diverse 
applications. These applications encompass urban and regional 
planning and administration, sustainable management of natural 
resources, and the detection of global environmental changes 
[27]. For instance, Li et al. [28] introduced a U-Net-based 
semantic segmentation method to extract building footprints 
from high-resolution multispectral satellite images of four cities 
(Las Vegas, Paris, Shanghai, and Khartoum). They integrated 
geographic information system (GIS) map datasets like 
OpenStreetMap, Google Maps, and MapWorld into their 
approach. The Precision, Recall, and F1-score are computed as 
accuracy measures. Using the Massachusetts building dataset, 
Alsabhan and Alotaiby [29] compared building extraction results 

from high-resolution satellite images using U-Net and Unet-
ResNet50 models. As an accuracy metric, the IoU, also referred 
to as the Jaccard Index, is the employed metric, serving as a 
straightforward yet highly valuable and efficient evaluation 
measure. The IoU metric calculates the overlap between the 
predicted segmentation area and the underlying area by dividing 
it by the combined area where the predicted segmentation and 
actual area intersect.  

Recognizing the lack of methodologies that investigate the 
spatial accuracy and transferability of the results obtained from 
urban features mapping, the authors used remote sensing, deep 
learning, and GIS in a combined way to identify buildings at 
potential risk locations through RGB aerial images and enhance 
the model’s spatial transferability. To gauge the methodology's 
effectiveness in identifying at-risk buildings, this study applies a 
semantic segmentation-based approach for the semi-automated 
assessment of buildings within landslide-prone areas. This 
research intends explicitly to investigate the statistical levels of 
accuracy of the segmentation model, also considering any 
differences in accuracy in the prediction due to the different 
urban morphologies of the application areas.  

The authors advocate a deep learning methodology founded on 
the U-Net model, a Convolutional Neural Network (CNN) that 
lends itself to more precise segmentation, even with limited 
training images. The model undergoes rigorous training and 
validation using the "Semantic Segmentation of Aerial Imagery" 
dataset, comprising 72 Dubai satellite images. Subsequently, its 
adaptability and transferability are tested by identifying and 
segmenting buildings within landslide-prone zones in the Calabria 
Region, Southern Italy. It's important to note that the accuracy of 
the U-Net model's segmentation capabilities depends heavily on 
the quality of the input data (RGB images), the representation of 
spatial features within these images, and the training process, 
including data augmentation techniques employed. 

The development of a universally applicable platform, 
confident in its performance across various geographical 
contexts, can play a crucial role in enhancing community 
resilience through better-informed urban planning and 
emergency response strategies and assumes paramount 
significance as it obviates the need for repetitive training and 
validation procedures, thereby expediting the estimation of 
damaged buildings.  

The remainder of this paper unfolds as follows: Section 2 
furnishes insights into the study area, along with details 
concerning the training, validation, and testing datasets. Section 
3 presents the proposed methodology, encompassing data 
preparation and the semantic segmentation model deployed for 
extracting building footprints. Building extraction results are 
expounded upon in Section 4, while Section 5 delves into the 
discussion and presentation of results for the case study. Finally, 
Section 6 offers a summary of the research's conclusions. 

2. DATASET AND STUDY AREA 

2.1. Dataset for Training and Validation and Data Augmentation 
Process 

The authors utilized the "Semantic segmentation of aerial 
imagery" dataset for the training and validation phases of the 
proposed U-Net model. This dataset, created in collaboration 
with the Mohammed Bin Rashid Space Center in Dubai, UAE, 
is in an open-access format [30], and it comprises 72 high-
resolution satellite images of Dubai, each accompanied by 
corresponding semantic segmentation masks. These satellite 
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images are categorized into six land cover classes, encompassing 
water, land, road, building, vegetation, and unlabelled areas.  

The training set employs 65 images in this study, while the 
validation set comprises seven images. 

The accuracy of deep learning models, particularly in 
Computer Vision (CV) techniques, is intricately linked to the 
training data's quality, quantity, and contextual significance. As 
stated in the introduction section, one of the significant 
challenges in deep learning approaches for image semantic 
segmentation tasks revolves around the limited availability of 
data suitable for training and validation. There has been an 
increasing emphasis on employing data augmentation techniques 
to generate well-qualified training and validation datasets to 
address this constraint. The primary objective of data 
augmentation is to enhance the adequacy and diversity of training 
and validation data by creating synthetic datasets [31]. It can be 
conceptualized as deriving the augmented dataset from a 
distribution closely resembling the original one, thus enabling a 
more comprehensive configuration. 

U-Net models have many parameters, making them robust 
but prone to overfitting, especially when the amount of training 
data is limited. Data augmentation artificially increases the size of 
the training dataset by introducing variations, helping the model 
to generalize better to unseen data. 

In the context of this research, the authors employed a range 
of data augmentation strategies for both the training and 
validation datasets, applying them to each image and mask 
randomly. Data augmentation exposes the model to various 
features, shapes, sizes, and orientations. This prevents the model 
from learning irrelevant patterns and enhances its generalization 
ability to different urban forms. Indeed, there may be an 
imbalance between the number of building pixels and non-
building pixels in urban aerial imagery. Data augmentation can 
help to balance the dataset by emphasizing rare cases, such as 
small buildings or buildings with unusual shapes. 

These augmentation operations were applied to the input 
images and their semantic segmentation masks. One of the 
strategies involves under-sampling, where an image is randomly 
cropped multiple times, each with a crop size of 512 × 512. This 
multiple cropping operation prioritizes the selection of regions 
with the highest sum of pixel values, thereby reducing the 
frequency of non-building entities in the samples. Another 
strategy adopted is a cost-sensitive approach. It involves 
constructing the loss function by combining the losses for each 
category with the total loss while assigning different weights 
based on the category proportions. 

Various transformations were applied to enhance the model's 
robustness, including random flipping, rotation, translation, side 
view transformations, and zooming for the input images and 
their corresponding masks. Additionally, all input images 
underwent a random manipulation, adjusting their saturation, 
contrast, brightness, changes in colour space and band order, and 
introducing Gaussian noise and random filtering operations [32]. 

2.2. Study Area and Testing Dataset 

The Calabria Region, situated in southern Italy, as of 2022, 
has an approximate resident population of 1,842,615 people, 
spread across 404 municipalities. Many of these municipalities 
have a population of 3,000 inhabitants. Due to its specific 
geological characteristics, the entire region is highly susceptible 
to various natural hazards, such as hydrogeological and seismic 
risks. Consequently, the rapid and accurate extraction of 

buildings within high-risk areas from remote sensing images is 
crucial for emergency management applications.  

The authors utilize information concerning landslide risk, 
including its location and severity level, as defined by the 
Hydrogeological Structure Plan, a tool used in Italy for basin 
planning, which addresses different types of risks, including 
landslides, floods, and coastal erosion.  

The trained and validated model is applied to the urban area 
of San Vito sullo Ionio within the Calabria Region (Figure 1). 
The inhabited region is concentrated in the southeast area of the 
municipal borders. Woods and agricultural land occupy the rest 
of the surface. This municipality is exposed to landslide risk, and 
its urban form is polycentric and highly dispersed. It comprises a 
principal denser compact nucleus representing the municipality's 
core and a diffused rural area around the central core. This case 
study is particularly suitable for testing the capability of the 
model to classify and segment buildings in dense and dispersed 
urban regions. Moreover, it allows the identification of eventual 
spatial patterns in the model's accuracy. 

For the testing stage of the model, the dataset employed 
consists of 0.423-meter pixel resolution (approximately 1-foot) 
natural colour orthoimages covering the considered municipality. 
The building polygons predicted by the model are compared with 
those retrieved from the Regional Technical Cartography (CTR) 
[33], which represents, in this study, the ground truth dataset. As 
previously mentioned, landslide risk areas are localized, 
considering the Hydrogeological Structure Plan [34].  

3. MATERIALS AND METHODS 

3.1. Summary of the Methodological Approach 

The central component of the proposed methodology revolves 
around a deep learning model based on a Convolutional Neural 
Network (CNN) [35], [36] designed specifically for automatically 
delineating built-up areas and subsequently identifying buildings at 
risk of landslides. A set of parameters or weights characterizes this 
neural network. A training phase is conducted to assess the 
mapping function's effectiveness. During this training phase, input 

 

Figure 1. Study area framework. 
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tiles are passed through the network, and a loss function is 
computed. The network's weights are adjusted iteratively to 
minimize this loss. The architecture of the neural network plays a 
crucial role in its performance. In this research, we employ a U-
Net architecture. The U-Net model is trained using the "Semantic 
segmentation of aerial imagery" method and utilizes the IoU-based 
loss function. The authors incorporate various data augmentation 
techniques to enhance the diversity and sufficiency of the training 
and validation data, creating a new synthetic dataset. These 
augmentation methods are applied to the input images and their 
corresponding semantic segmentation masks. 

Performance evaluation is carried out using Recall, Precision, 
and F1 metrics. The output of the trained model is a Semantic 
segmentation mask that categorizes segmented elements into six 
classes: water, land, road, buildings, vegetation, and unlabelled. 
For this study, we focus solely on identifying buildings. 
Subsequently, the model is tested on an urban area within the 
Calabria region to assess its ability to classify accurately and 
segment buildings vulnerable to natural hazards.  

The output Semantic segmentation mask produced by the 
model is imported into a Geographic Information System (GIS) 
platform and vectorized. The authors utilize the open-source 
QGIS Desktop software as our GIS platform for this research. 
To evaluate the model's accuracy when applied to the case study, 
the authors compare the building polygons generated by the 
model with building polygons from the Regional Technical Map, 
calculating the F1-score metric. Specifically, the comparison is 
made for the entire built-up area and the buildings within 
landslide risk zones. For the whole built-up area, the authors, 
using a buffering spatial analysis, evaluated the difference in 
accuracy in the model's predictions between the centre of the 
municipality under study, characterized by a greater density of 
buildings, and the rural outskirts, depicted mainly through 
scattered houses. 

3.2. U-Net model training and validation  

The authors selected the Adam optimization method to train 
the U-Net semantic segmentation model. Choosing an 
appropriate loss function is pivotal for ensuring model accuracy 
and typically hinges on data characteristics and class definitions. 
By adjusting the learning rate during training, Adam leads to 
faster convergence than methods with a constant or manually 
decayed learning rate. This can be crucial when training complex 
models like U-Net, where the computation cost is high. 
Furthermore, this optimization method is well-suited for 
problems with non-stationary objectives, common in urban 
feature segmentation due to the varying shapes, sizes, and 
textures of buildings in urban landscapes. 

This study considered the IoU-Based Loss, also known as the 
Jaccard Index IoU-Based Loss. 

The IoU (Intersection over Union), reported in equation (1), 
also known as the Jaccard index, is a widely adopted region-based 
performance metric for image segmentation tasks. The IoU is 
naturally robust to class imbalance (common in building 
segmentation, as building footprints often cover a small portion 
of the total image area). It does not treat every pixel equally but 
focuses on the proportion of correctly predicted building pixels 
to the total predicted and actual urban feature pixels. By focusing 
on the intersection over union, the Jaccard loss emphasizes the 
quality of the overlap between the predicted and ground truth 
segments. This is crucial for segmentation tasks, as it encourages 
the model to predict segments that closely match buildings' 
actual shapes and boundaries. Its values range from 0 (indicating 

no similarity) to 1 (indicating complete agreement between 
predictions and ground truth labels). To incorporate IoU into the 
optimization process, the authors computed the IoU-based loss 
function based on equation (2). 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 , (1) 

𝐼𝑜𝑈Based𝐿𝑜𝑠𝑠 =  1 − 𝐼𝑜𝑈 . (2) 

In Equation (1), 'TP' represents True Positives (correctly 
predicted buildings), 'FP' signifies False Positives (non-building 
entities wrongly identified as buildings), and 'FN' denotes False 
Negatives (actual buildings incorrectly classified as non-
buildings). 

The optimization process employed the Adam optimization 
algorithm with an initial learning rate of 0.001 and default 
hyperparameters β1 = 0.9 and β2 = 0.999. Validation was 
conducted during training, and the loss was monitored. The 
learning rate was halved if the validation loss did not improve 
within four epochs. To prevent overfitting, training was halted if 
the validation loss showed no improvement for 100 epochs. 

Training and validation processes took place in the Google 
Colaboratory Pro Plus environment, using 52 GB of RAM and 
the NVIDIA Tesla P100 GPU.  

The project was implemented in Python, with PyTorch and 
TensorFlow as the deep learning framework. (GitHub 
repository) [37]. 

3.3. Evaluation of the General U-Net Model's Prediction Accuracy 

In this research, the prediction accuracy performance of the 
U-Net model was evaluated using several metrics, including 
precision, recall, and the F1-score [38], that are required to 
provide a comprehensive assessment, especially when dealing 
with an imbalanced number of samples.  

Precision assesses the proportion of correctly classified 
samples among those predicted as positive. Recall quantifies the 
proportion of correctly classified samples among all truly positive 
samples. The F1-score, the harmonic mean of precision and 
recall, offers a comprehensive performance measure. As 
previously mentioned, the terms True Positive (TP) represent 
positive samples correctly predicted by the model, True Negative 
(TN) denotes negative samples correctly identified as negative by 
the model, and False Positive (FP) represents negative samples 
incorrectly identified as positive. False Negative (FN) refers to 
negative samples mistakenly predicted as positive. Equations (3) 
to (5) present the mathematical expressions for these 
performance measures: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , (4) 

𝐹1 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 . (5) 

3.4. Evaluation of U-Net Model Spatial Accuracy in the Testing 
Phase 

The U-Net model is employed in a case study, resulting in a 
predicted mask for built-up areas, focusing on the overall built-
up area and the buildings located within landslide risk zones. 
Subsequently, this mask is imported into the QGIS desktop 
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platform, where it is transformed into a vector layer and 
compared with the label mask from the ground truth dataset. 

Assessing a deep learning model's transferability involves 
applying the model to geographic regions significantly distant 
from the areas used for training and validation. This testing of 
geographic transferability is valuable in eliminating spatial 
autocorrelation patterns between the training and testing data. 

The main challenge consists of applying the model to a case 
study with an urban form variable passing from the central 
nucleus from the rural area, completely different from the urban 
forms used in the training and validation phases of the model. 

The authors conducted a multi-phase analysis to evaluate the 
spatial patterns of the model's accuracy.  

In the first phase, a comparison was made between the actual 
and predicted built-up area, considering all the buildings in the 
inhabited centre of the case study. The objective is to identify any 
differences in the accuracy of the predictions related to the density 
of the built-up areas. In particular, the authors intend to verify how 
the model behaves in the segmentation of aerial images in which 
the density of building footprints is predominant compared to 
other landscape features. For this purpose, the authors conducted 
a multi-ring buffering analysis in the QGIS environment by 
dividing the inhabited centre of San Vito sullo Ionio into 
concentric circular buffers with a constant radius of 350 meters, 
starting from the central urban nucleus with the highest built-up 
density and moving towards the rural areas. The urban centre area 
with the greatest density of public and private services was 
considered the central nucleus of the circular buffers. In small 
urban centres, a 350-meter radius will likely capture a homogenous 
set of buildings with similar architectural styles, materials, and 
heights, providing a more controlled environment for the U-Net 
model to operate. Indeed, as the case study considered, larger 
buffers might result in diminished returns for small municipalities 
due to the sparsity of buildings outside the central area. 

Through the spatial analysis of the data, the authors calculated 
the actual built surface for each buffer considered. They compared 
this with the built surface predicted by the U-Net model, obtaining 
various values of the F1-score. This score, as defined in Equation 
(5), is used for classification and segmentation tasks to evaluate the 
model's ability to classify instances correctly into different categories. 
In this way, it is possible to outline the trend of the model's accuracy 
with the variation of the urban form expressed in terms of the 
density of the built-up areas. 

To provide insights into how the model's performance 
changes over different spatial scales, the authors calibrated the 
coefficients of a power decay function involving F1-score and 
buffer radius in the multi-ring buffer analysis to evaluate the 
spatial variability of the U-Net model's classification and 
segmentation accuracy. The mathematical expression of the used 
decay function is the following: 

𝐹1 = 𝑎 ∙ 𝐷𝐹𝐶𝑏 . (6) 

In Equation (6), a and b are constants that define the specific 
characteristics of the decay function. At the same time, DFC 
represents the distance from the central nucleus of the 
municipality, i.e., the buffer radius. 

This function suggests that the buffer radius influences the 
F1-score’s non-linearly. The exponent b dictates the nature of this 
relationship: 

• if b > 0, the F1-score increases as the buffer radius increases, 
suggesting better model performance at greater distances 
from the centre; 

• if b < 0, the F1-score decreases as the buffer radius increases, 
indicating a decline in model performance with distance; 

• if b = 0, the F1-score remains constant regardless of the buffer 
radius, implying uniform performance across distances. 
The parameter a acts as a scaling factor for the F1-score. Its 

value adjusts the overall level of the scores. The authors 
considered the coefficient of determination R2 to measure how 
well the decay model replicates the observed outcomes. 

In the second phase, the authors tested the accuracy of the 
model, considering exclusively the buildings located in landslide 
risk areas to verify the capabilities of the proposed model to 
identify specific elements scattered over the territory. Also, the 
authors used the F1-score as a metric in this case. 

The described methodology evaluates the model's ability to 
extend its predictions to geographic areas it has yet to encounter 
during training. 

4. RESULTS 

4.1. Training and Validation Results for the U-Net Model 

The U-Net model, commonly employed in semantic 
segmentation tasks as discussed in Section 3.2, underwent 
training and validation using the IoU-Based Loss.  

The best-performing model reached convergence at epoch 
91, achieving a Precision value of 0.63, a Recall value of 0.84, and 
an F1-score of 0.72. The validation loss reached the value of 
0.634. Once it was established that the model had reached a good 
level of accuracy in the training and validation phases, the authors 
applied the U-Net to the case study for building classification and 
segmentation. 

4.2. Spatial Accuracy Results of the U-Net Model in the Testing Phase 

The trained and validated U-Net model was applied to the 
urban area of San Vito sullo Ionio, as detailed in Section 2. The 
representation of the various vectorial elements within the aerial 
images was developed using the QGIS platform, allowing the 
authors to process the geospatial statistics necessary to determine 
the spatial patterns of the model accuracy. 

In Figure 2, the predicted building mask generated by the U-
Net model is depicted in orange. 

 

Figure 2. Predicted built-up area’s mask and multi-ring buffers 
representation. 
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As described in the methodological section, starting from the 
central urban nucleus with the highest built-up density and moving 
toward the rural areas, the authors carried out a multi-ring 
buffering analysis considering circular buffers of 350 meters 
constant radius.  

As shown in Table 1, the entire municipality of San Vito sullo 
Ionio is contained in a buffer with a maximum radius of 2100 
meters. The central nucleus enclosed within a 350-meter radius, in 
which there is a built-up area of approximately 1.810 ha, is 
characterized by a high average F1-score value of 0.994, which 
indicates an excellent level of accuracy of the U-Net model in 
building classification and segmentation.  

Moving from the more densely built central core to the rural 
outskirts, the number of buildings becomes increasingly smaller, as 
does the built-up area, and the F1-score average value becomes 
0.806, 0.678, 0.444, 0.642 and 0.456 in the 700, 1050, 1400, 1750 and 
2100-meter radius buffer, respectively. The building footprints 
decrease in number and density to the detriment of the other 
elements of the territory, passing from the central core to the 
periphery. In this circumstance, the model overestimates the surface 
area occupied by existing buildings, generating a more significant 
number of FPs. 

This trend is confirmed considering the calibrated decay model 
functional form (Figure 4) reported as follows: 

𝐹1 = 11.651 ∙ 𝐷𝐹𝐶−0.416 (7) 

The coefficient of determination R2 reached the value of 0.84, 
which is relatively high, suggesting that approximately 84% of 
the variance in the F1-score is predictable from the buffer radius 
(Figure 4). This implies a strong relationship between the buffer 
radius and the U-Net model's performance.  

Considering the built-up area in landslide risk zones, Figure 3 
reveals a relatively low level of landslide risk, with only 0.434 ha 
of built surface falling in landslide risk areas. The landslide risk 
zones from the official Basin Authority dataset are shown in red, 
and the predicted building shapes falling within landslide risk 
zones are highlighted in violet. 

Nonetheless, the model predicts the footprint of these 
buildings with a reasonably good level of accuracy, reaching an 
F1-score value of 0.75. This result is perfectly consistent with the 
spatial accuracy analysis considering the entire built-up area. The 
landslide risk areas correspond with the buffers of 350, 700, and 
1050 meters radius. 

5. DISCUSSION OF RESULTS 

A significant challenge of this research lies in applying the 
methodology for the classification and segmentation of built-up 
surfaces located in a geographical area, distinct from the training 
and validation dataset regarding geomorphology and territorial 
features. Nevertheless, the model demonstrated a commendable 
level of geographical adaptability considering the case study, 
indicating a low spatial autocorrelation pattern between the 
training and testing data. This adaptability is crucial for model 
generalization, particularly for disaster management operations, 
allowing for rapid, accurate estimations of buildings needing 
monitoring or those damaged in catastrophic events without 
extensive retraining. 

The authors, employing a multi-ring buffer analysis and 
calibrating a decay function, considered the variation in 
segmentation accuracy of the U-Net model, measured by the F1-
score, across different buffer zones to identify spatial patterns or 
discrepancies in model performance.  

The high value of the R2 coefficient obtained from the decay 
function calibration process indicates that the model's 
performance varies significantly across different spatial scales 
(buffer radii). The results demonstrated that the urban form 
influences the U-Net model's ability to classify and segment 
built-up areas. Denser urban environments, with their distinctive, 
repetitive patterns and reduced complexity, are more conducive 
to accurate classification and segmentation by the U-Net model. 
Indeed, buildings and other structures often have more defined, 
repetitive patterns in densely built-up urban environments and 
are closely situated. These distinct features make it easier for the 
U-Net model to identify and segment the urban fabric. The 
compact nature of dense urban areas reduces the complexity of 
the image, as there is less variation in the types of objects and less 

 

Figure 3. Predicted built-up area’s mask and multi-ring buffer representation 
considering the landslide-risk zones. 

 

Figure 4. The functional relationship between F1-score and the distance from 
the denser built-up core. 

Table 1. The trend of F1-score values concerning the built-up area surface and 
the distance from the central nucleus of San Vito sullo Ionio. 

Buffer Radius (m) Built-up Area (ha) F1-score 

350 1.810 0.994 

700 0.113 0.806 

1050 0.127 0.678 

1400 0.005 0.444 

1750 0.015 0.642 

2100 0.004 0.456 
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open space to differentiate from built structures. This uniformity 
aids the model in recognizing and delineating built-up areas. 

In contrast, scattered or dispersed urban areas present a 
challenge for the U-Net model. The irregular distribution of 
buildings, interspersed with natural landscapes or other non-
urban elements, creates a more complex scenario for the model 
to classify and segment accurately. This complexity can lead to 
reduced accuracy due to the difficulty of distinguishing isolated 
structures from their surroundings. 

The results are confirmed, considering the built-up area in 
landslide risk zones. The reasonably good accuracy value is 
probably linked to the fact that the landslide risk areas are located 
in the areas of the municipality characterized by a higher density 
of built-up areas than the other areas of the case study. 

The resolution of RGB aerial images also plays a critical role. 
In denser urban areas, even lower-resolution images provide 
sufficient information for effective segmentation. In contrast, 
higher resolution is necessary in scattered urban regions to 
capture the finer details of isolated structures. 

For these reasons, future research will focus on expanding the 
dataset sample for training and validation and comparing deep-
learning architectures to improve building extraction 
performance in complex urban settings. Enhancing the accuracy 
of building extraction employing metrology assessment and 
integrating accurate information into GIS has great utility for 
many urban planning tasks, which along with disaster 
management, include land use classification, infrastructure 
development, and environmental assessment. 

6. CONCLUSIONS 

This research introduces a novel method employing deep 
learning to detect built-up areas at risk in natural disasters 
through satellite and aerial imagery analysis. Central to this 
approach is the U-Net model, trained with "Semantic 
segmentation of aerial imagery". The authors enhanced the 
diversity and adequacy of training and validation data by 
employing various data augmentation techniques on the input 
images and their associated semantic segmentation masks.  

The study also addressed the spatial variation assessment of 
the model’s accuracy, which depends on the density of the built-
up area. Understanding this relationship can guide efforts to 
optimize the U-Net model, especially if specific spatial scales 
have suboptimal performance.  

The model demonstrated commendable accuracy and 
geographical adaptability in its application to different urban 
forms. Factors influencing this adaptability include varied urban 
layouts, the scope and position of landslide risk zones, diverse 
land use types (like residential, commercial, and industrial), 
geomorphological territory features, construction styles, and 
materials leading to different RGB spectrum values for identical 
object classes. 

The method rapidly estimates areas needing monitoring or 
likely to be damaged in catastrophic events. This makes it an 
invaluable asset for disaster management and planning, 
functioning as an early warning system to pinpoint critical areas 
needing regular surveillance. It is also helpful for evaluating 
damage to buildings and infrastructure post-disaster, utilizing 
satellite, aerial, or UAV-derived images, especially in less 
accessible zones. Given its demonstrated geographical 
adaptability, this tool can assist decision-makers in swiftly 
devising effective strategies and countermeasures for disaster 
response. The spatial accuracy assessment in building extraction 

operations proposed in this paper aims to provide an accurate 
and up-to-date database about the built environment, which 
plays a crucial role in urban and disaster management planning. 
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