Wearable devices and Machine Learning algorithms to assess indoor thermal sensation: metrological analysis
DOI:
https://doi.org/10.21014/actaimeko.v12i3.1570Keywords:
machine learning, measurement uncertainty, Monte Carlo simulation, personal comfort model, physiological signals, thermal sensation, uncertainty propagation, wearable sensorsAbstract
Personal comfort modeling is considered the most promising solution for indoor thermal comfort management in buildings. The use of wearable sensors is investigated for the real-time measurement of physiological signals to train comfort models for buildings monitoring and control. To achieve the required reliability, different uncertainty sources should be considered and weighted in the measurement results evaluation. This study presents an example of personal comfort model (PCM) development based on wearable sensors (i.e., Empatica E4 smartband and MUSE headband) acquiring multimodal signals (i.e., photoplethysmographic – PPG, electrodermal activity – EDA, skin temperature – SKT, and electroencephalographic – EEG ones), together with a metrological characterization of the modeling procedure. Starting from the data collected within an experimental campaign on 76 subjects, different Machine Learning (ML) algorithms were exploited to create comfort models capable of predicting the human thermal sensation (TS). The most accurate model was considered to investigate the impact of sensors uncertainty through a Monte Carlo simulation. Results showed that the Random Forest model is the best performing one (accuracy: 0.86). Monte Carlo simulation method proved that the model is very robust towards measurement uncertainties of input features (expanded uncertainty of the model accuracy: ± 0.04, k = 2). This confirms the possibility to derive the subject’s TS exploiting only physiological signals; measurement uncertainty is influenced mostly by PPG and EDA signals. This kind of investigation could lead to the development of PCMs, exploitable within control systems to optimize subjects’ well-being and building energy efficiency.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Gloria Cosoli, Silvia Angela Mansi, Gian Marco Revel, Marco Arnesano
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).