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1. INTRODUCTION 

The World Health Organization (WHO) states that physical, 
mental, and social domains influence a subject’s well-being [1]. 
Several studies report that thermal comfort, defined as “the 
condition of mind that expresses satisfaction with the thermal 
environment” [2], is correlated to well-being, satisfaction, and 
productivity in indoor environments [3], [4]. Recently, research 
on thermal comfort modelling has focused on the possible 
correlations among environmental parameters (e.g., air 
temperature, relative humidity, etc.), occupants’ physiological 
and psychological data (e.g., heart rate, skin temperature, etc.), 
and their subjective feedback (e.g., thermal sensation and thermal 

preference, commonly collected by questionnaires). The 
subject’s thermal sensation (and perception) can be considered 
as feedback towards the building environmental regulation, in 
particular in the context of Personal Comfort Models (PCMs), 
which can be exploited also for human-centred control purposes. 
This is pivotal when designing a living environment, process with 
a twofold aim: improving human well-being, health status, and 
productivity, as well as streamlining the building energy 
consumption, in a view of energy efficiency [5], [6]. Indeed, both 
the energy consumptions optimization and the guarantee of the 
occupants’ thermal comfort can be achieved through the 
adoption of proper control strategies, which are based on the 
accurate measurement of thermal sensation [7], thus considering 

ABSTRACT 
Personal comfort modeling is considered the most promising solution for indoor thermal comfort management in buildings. The use of 
wearable sensors is investigated for the real-time measurement of physiological signals to train comfort models for buildings monitoring 
and control. To achieve the required reliability, different uncertainty sources should be considered and weighted in the measurement 
results evaluation. This study presents an example of personal comfort model (PCM) development based on wearable sensors (i.e., 
Empatica E4 smartband and MUSE headband) acquiring multimodal signals (i.e., photoplethysmographic – PPG, electrodermal activity 
– EDA, skin temperature – SKT, and electroencephalographic – EEG ones), together with a metrological characterization of the modeling 
procedure. Starting from the data collected within an experimental campaign on 76 subjects, different Machine Learning (ML) algorithms 
were exploited to create comfort models capable of predicting the human thermal sensation (TS). The most accurate model was 
considered to investigate the impact of sensors uncertainty through a Monte Carlo simulation. Results showed that the Random Forest 
model is the best performing one (accuracy: 0.86). Monte Carlo simulation method proved that the model is very robust towards 
measurement uncertainties of input features (expanded uncertainty of the model accuracy: ± 0.04, k = 2). This confirms the possibility 
to derive the subject’s TS exploiting only physiological signals; measurement uncertainty is influenced mostly by PPG and EDA signals. 
This kind of investigation could lead to the development of PCMs, exploitable within control systems to optimize subjects’ well-being 
and building energy efficiency. 
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the subjectivity within the framework of environmental control 
systems, acting on both physiological state and comfort. 
Nevertheless, the most challenging aspect is related to the need 
of simple acquisition systems, for a greater spreading of the 
assessment procedure. A possible solution could be the 
restriction of the analysis to physiological parameters (preferably 
acquired through wearable sensors, not requiring specific 
installation in the built environment), monitored with 
appropriate accuracy. Several physiological parameters in 
literature have been demonstrated to be related to thermal 
comfort [8], such as ElectroCardioGram (ECG – Heart Rate, 
HR, and its variability, HRV, are expected to vary with thermal 
comfort [9]), ElectroEncephaloGram (EEG – whose frequency 
bands, related to diverse neural activities, vary along with thermal 
conditions [10], [11]), ElectroDermal Activity (EDA – 
quantifying the arousal of the SNS and mirroring the activity of 
the sweat glands, hence carrying information dealing with the 
subject’s perceived emotions [12] and experienced stress [13]), 
and SKin Temperature (SKT – reflecting the perception of the 
environmental temperature). 

More and more frequently wearables are used in combination 
with ML or Artificial Intelligence (AI) techniques for the 
classification/prediction of individuals’ thermal comfort or 
thermal sensation in indoor environments. Park and Park [14] 
exploited the ensemble transfer learning method on data 
acquired through wearable and environmental sensors to predict 
individual thermal comfort, reaching accuracy values of 0.85-
0.95. A moderate prediction power was reached also by Liu and 
colleagues [15], who developed PCMs through lab-grade 
wearable sensors; they observed better results when not in 
thermal neutrality conditions. Also, non-conventional wearable 
sensors have been investigated in the literature, such as sweat rate 
sensors (with a measurement error < 10 %), which were 
demonstrated to be able to discriminate among 4 different 
thermal states (even if no AI techniques were employed for 
classification) [16]. Chaudhuri et al. [17] acquired physiological 
signals through wearable sensors, finding relevant differences 
between females and males also in terms of subjective responses 
to thermal conditions. Using the Random Forest classifier, they 
reached prediction accuracy values of approximately 0.93 and 
0.94 for males and females, respectively. 

Models for classification/prediction purposes based on 
physiological signals can support the development of relatively 
compact, non-intrusive, nor invasive monitoring systems, 
decoding the subjective perception of thermal conditions, 
without inevitably counting on environmental sensors. In this 
way, personalized comfort systems could be developed and 
adapted based on the subject’s physiological state, which can be 
monitored through wearable sensors, in an occupant-centric 
perspective. This paves the way towards sustainability in terms 
of buildings energy consumption, leading to the development of 
advanced Heating, Ventilation, and Air Conditioning (HVAC) 
and lighting control systems taking advantage of the interaction 
with PCMs.  

In this perspective, the authors carried out a preliminary study 
[18] to demonstrate the feasibility of thermal sensation 
assessment through the combined use of Machine Learning (ML) 
classifiers and wearable sensors, measuring physiological signals 
in a fully controlled environment, and exposing the participants 
to predetermined thermal conditions. Results showed 
classification accuracy values up to 0.80, encouraging the 
expansion and deepening of this line of research. However, the 
final accuracy and reliability of this kind of models depend on 

the measurement uncertainties linked to each step of the whole 
measurement chain, including both hardware and software 
components. In recent years, more and more studies employ 
wearable sensors for remote monitoring in a plethora of 
frameworks, also providing multimodal signals collection better 
depicting the subject’s physiological status [19]. But it is pivotal 
to always characterize and validate them from a metrological 
point of view to provide information related to the sensor’s 
uncertainty. In fact, despite wearable sensors have several 
advantages (e.g., being user-friendly, available in many quality 
and cost segments, providing multimodal signals, etc.), on the 
flip side they are currently relatively scarcely investigated in terms 
of metrological characteristics: measurement accuracy and 
precision are frequently not available, or the used test protocol is 
not declared, neither standard protocols are established, resulting 
in barely comparable data. Furthermore, the combination of 
wearable sensors with ML and AI algorithms introduces other 
uncertainty sources to the results of the measurement procedure, 
since these models have a probabilistic nature and, consequently, 
an intrinsic inaccuracy. The different sources of uncertainty 
(both from hardware and software points of view) should be 
properly considered, and their contribution should be evaluated 
along the whole measurement chain. The best method to do this 
is following the recommendations provided in the Guide to the 
Expression of Uncertainty in Measurement (GUM) [20]. 

Hence, the main objective of this paper is to test different 
types of ML classifiers for TS and to consider the best 
performing one for an uncertainty analysis according to the 
Monte Carlo simulation method, so as to take into account the 
impact of wearable sensors uncertainties on the model 
classification performance. 

The paper is organized in this way: Section 2 presents the 
materials and methods used for the study; in Section 3 the 
authors report the results related to both classification of thermal 
sensation and uncertainty propagation plus sensitivity analysis. 
The results are discussed in Section 4, where the authors also 
provide possible future developments. The study schematic 
pipeline is reported in Figure 1. 

2. MATERIALS AND METHODS 

2.1. Data acquisition campaign 

The experimental acquisition campaign involved 76 healthy 
subjects (aged 26.7±2.8 years), without clinical histories possibly 
altering the results. It is worthy to highlight the juvenile age of 
the test population, since well-being perception can vary with age 
(e.g., older people generally have less capability to effectively 
respond to thermal changes), and this directly impact on the 
parameters of models based on physiological response. The tests 
were performed within the NEXT.ROOM [21] (University of 
Perugia), a fully controlled environment equipped with different 
systems able to control stimuli related to multiple domains, i.e., 
a radiant system on all the internal surfaces of the test room, an 
HVAC system, and LED panels plus RGB reflectors for 
lightning. The tests were performed in a period covering 
wintertime, springtime, and summertime (51 %, 32 %, and 17 %, 
respectively); the metabolic rate can be assumed equal to 1.1 met 
according to the standard ISO 7730 for sedentary activities 
(writing, desk work, using computer) [22].  

All subjects gave their informed consent for inclusion before 
they participated in the study. The tests were carried out in 
accordance with the WMA Declaration of Helsinki [23] and with 
the statute of the Ethics Committee of the University of Perugia. 
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All the data were managed in accordance with the General Data 
Protection Regulation (GDPR) and anonymization was applied 
to protect the privacy and confidentiality of all the gathered 
information.  

The subjects were also asked to fill out a survey, collecting 
both personal information and thermal sensation (TS) and 
thermal comfort votes based on 5-point scales. For TS we have 
-2 (cold), -1 (slightly cold), 0 (neutral), +1 (slightly warm), and +2 
(warm); the scale was designed in line with the purpose of the 
study, which aims at exposing individuals on two opposite indoor 
TS, to discriminate between warm/cold sensations, without 
considering different degrees of intensity. These scores were 
used as labels for ML-based classification. 

Three different thermal conditions were chosen as 
representative of cold (16.0 ± 0.6 °C), neutral (24.0 ± 0.9 °C), 
and hot (31.0 ± 2.4 °C) scenarios, in accordance with ISO 
7730:2005 [22]. Lightning conditions were neutral, with a CCT 
equal to 4114 K and an illuminance of 500 lx (measured on the 
desk at 75 cm from the floor and near the subject). 

The duration of a test session was equal to approximately 20 
minutes; at least 15 minutes for acclimatization (literature reports 
a preconditioning time range of 20.7 ± 9.7 min reported in the 
literature [24]), 5 minutes for signals recording. If the target TS 
had not been reached, the acquisition was postponed until the 
achievement of the desired thermal condition. Tests with 
inconsistencies between the reported and targeted TS were 
removed from the dataset. 

2.2. Acquisition devices 

Physiological signals were acquired through two wearables 
sensors: 1) Empatica E4 smartband [25] (Empatica, 2020, 
firmware 3.2.0.8313), which is a Class IIA medical Device 
(93/42/EEC Directive) with 4 sensors onboard, i.e.,  

i) PPG sensor for the acquisition of the blood volume pulse 
(BVP) signal,  

ii) EDA sensor for the measurement of skin,  
iii) infrared thermometer for SKT, and  
iv) 3-axial MEMS accelerometer, and  

2) Interaxon MUSE headband [26] for EEG acquisition, with a 
reference electrode (FPz) on the forehead and 4 input electrodes 
(2 silver-made on the forehead, AF7 and AF8, and 2 in 
conductive rubber above ears, TP9 and TP10). 

2.3. Data processing and ML algorithm-based analysis for the 
prediction of thermal sensation 

The electroencephalographic signal was initially filtered 
(bandpass filter at 0.1-45 Hz, Notch filter at 50 Hz) to remove 

motion artefacts and noise [26]. Then, the Fast Fourier 
Transform (FFT) was employed to compute the power spectrum 
densities (PSDs) of five different frequency bands [27]–[30]:  

i) Delta band (0.1-4.0 Hz), dominant in infants and in certain 
sleep phases and involved in motivational processes; some 
literature studies revealed a high power in the delta band in 
warm conditions [31],  

ii) Theta band (4.0-7.5 Hz), often linked to memory and 
emotional regulation; some studies in the literature report a 
decrease in this band in a warm environment [32], 

iii) Alpha band (7.5-12.0 Hz), appearing when the eyes are 
closed and during the relaxing state and disappearing in 
case of alerting,  

iv) Beta band (12-30 Hz), the normal rhythm for alert/anxious 
people; some literature findings report a higher content in 
cold/warm thermal conditions with respect to neutrality 
[33], 

v) Gamma band (30-45 Hz), prevalent in complex and high 
attention-demanding tasks, (e.g., concentration and 
problem-solving activities). 

Regarding the PPG signal, the Inter-Beat Intervals (IBIs) 
provided by Empatica E4 were considered for HRV analysis, 
which was performed through the “hrvanalysis” Python module 
[34] (in both time and frequency domains). 

Concerning EDA, the EDA toolkit 11 allowed to remove 
movement artefacts, then the cvxEDA tool 13 was exploited to 
determine tonic and phasic components [35]. 

A total of 110 features (averaged on the whole 5-min 
recording duration) were extracted from the different 
physiological signals acquired in each test. A preliminary 
statistical analysis was carried out on the extracted features. In 
particular, the Shapiro test [36] was exploited to evaluate the 
normality of groups; then, since all the features’ distributions 
resulted in non-Gaussian like, their statistical significance 
(p < 0.05) in terms of differences with TS was evaluated through 
the Kruskal-Wallis test [37]. At this point, data were prepared for 
the ML-based classification procedure. At first, the correlation 
matrix was manually cleaned up from superfluous features, then 
LASSO regularization and ANOVA methods were exploited to 
derive the weight of the features in the classification process. To 
reduce the problem dimensionality, a Random Forest method, 
based on entropy decrease, was used to select the features with 
the higher impact. The classification threshold between hot and 
cold TS was chosen equal to 0.5 (0 equal to the cold sensation 
and 1 equal to the warm sensation). This procedure was executed 
to fine-tune the subset of features to be used as input for six 

 

Figure 1. Schematic pipeline of the study. 
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supervised ML classifiers (among the most exploited in literature 
[38], [39], as well as recommended for classification purposes 
according to the scikit-learn [40] documentation), namely:  

i) K-Nearest Neighbors (kNN), making the prediction on the 
basis of test-training points distance,  

ii) Random Forest (RF), based on decision trees for 
classification/prediction purposes, considering respectively 
the majority and the average,  

iii) Logistic Regression (LR), a non-linear model computing 
the probability of a determined output given a variable of 
input,  

iv) Gaussian Naïve Bayes (GNB), which exploits the Gaussian 
distribution to model continuous features, 

v) Gradient Boosting (GB), whose cost function is based on 
the mean square error when the model is used for 
regression purposes, whereas is a logarithmic loss when 
exploited for classification, 

vi) Decision Tree (DT), which learns basic decision rules on 
the basis of the characteristics of the input data. 

The thermal sensation prediction model was designed 
utilizing scikit-learn [40]. The acquired dataset was divided into 
training and testing sub-datasets, with a ratio of 7:3. Bayesian 
optimization and 10-fold cross-validation were employed to 
optimize the ML classifiers hyperparameters. Regarding the 
former optimization tool, the BayesSearchCV function has been 
exploited; a fit and a score method were implemented, and a 
cross-validated search was used to optimize the estimator 
parameters. The parameter space has been optimized according 
to parameters specific for each model (Table 1).  

As above mentioned, TS values were used as labels in a binary 
classification: hot (TS > 0 and cold (TS < 0) thermal sensations. 
The evaluation of the classification performance of the classifiers 
was made through standard metrics, namely Accuracy, Sensitivity 
(or Recall), Precision, and Area Under Curve (AUC) [41]. The 

models training was completed within the cuda toolkit, exploiting 
the Nvidia GeForce RTX 3080 Ti graphic processing unit.  

The input features feeding the classifiers came from the 
multidomain physiological signals, selected according to their 
correlation with the class to be predicted and the simultaneous 
non-correlation with the other features. Then, the best feature 
subset was selected for the evaluation of the model classification 
performance. 

 

2.4. Uncertainty propagation and Monte Carlo simulation 

The authors performed an uncertainty analysis to identify the 
most relevant interfering sources in the context of the 
assessment of the indoor thermal sensation. The best performing 
ML algorithm with the related feature subset was considered for 
the analysis of the measurement uncertainty. In particular, the 
Monte Carlo simulation method was adopted to numerically 
estimate the measurement uncertainty according to the GUM. 
The chosen model was run 104 times, taking as input the selected 
features extracted from the considered signals (i.e., IBI, EDA, 
SKT, and PSD of EEG brain waves), which were perturbed 
according to a Gaussian distribution.  
The standard deviation (σ) of this distribution was set according 
to typical values taken from literature, namely: 

• 2.5 bpm for HR (i.e., approximately 42 ms considering the 
IBIs). This value was chosen to remain in cautionary 
conditions (also because the signal is extracted from PPG, 
which is prone to many sources of uncertainty [42]), 
considering the mean absolute percentage error judged 
acceptable for an accurate HR monitor according to the 
ANSI/AAMI/IEC 60601-2-27:2011/(R)2016 [43], 

• 0.006 µS in terms of skin conductance for EDA [44], 
• 0.5 °C for SKT (conservative range with respect to the 

0.2 °C value reported by Empatica user E4 manual [45]), 
• 5 % of the average PSD for EEG waves (authors’ 

protective hypothesis). 
The Gaussian distribution of the considered physiological 

quantities (i.e., IBI, EDA, SKT, and PSD of EEG waves) was 
built and the signal processing pipeline was repeated in order to 
extract the features from the perturbed signals. Hence, these 
features were exploited to train the selected best performing ML 
classifier, perturbing all the input variables simultaneously. The 
propagation of uncertainty in the whole measurement chain for 
TS prediction was evaluated in terms of the classifier accuracy. 
This was done to demonstrate the robustness of the model 
against the variability of physiological signals (including not only 
the sensors uncertainty, but also the variability of the vital signs, 
which plays a relevant role in the determination of uncertainty 
[46]). Then, perturbing only a physiological signal at a time and 
maintaining the others as-are, a variance-based sensitivity analysis 
was performed, in order to understand which signals mostly 
affect the results. In particular, the first-order variance-based 

sensitivity coefficients 𝑆(𝑥𝑖) were computed according to 
equation (1): 

𝑆(𝑥𝑖) =
𝑢𝑖(𝑦)2

𝑢(𝑦)2
∙ 100 %, (1) 

where 𝑢𝑖(𝑦) is the standard uncertainty of the output due to the 

i-th input uncertainty, whereas 𝑢(𝑦) is the standard uncertainty 
of the output when the uncertainty of all the inputs is considered. 
The variance can be calculated as the square of the standard 
deviation in the case of normal distribution (i.e., the one selected 
in the presented work). 

Table 1. Hyperparameters optimization for the considered ML classifiers. 

ML 
classifier 

Parameter Range for optimization 

kNN 

Leaf size [1, 2, 3, …, 50] 

Number of neighbours [1, 2, 3, …, 30] 

Weights for prediction [‘uniform’, ‘distance’] 

Metric for distance 
computation 

[‘euclidean’, ‘manhattan’, 
‘minkowski’] 

RF 
Number of estimators [10, 100, 1000] 

Maximum number of 
features 

[‘log2’, ‘sqrt’] 

LR 

Norm of the penalty [‘L2’] 

C (inverse of regularization 
strength) 

[100, 10, 1.0, 0.1, 0.01], [10-4, …, 
104] with 20 steps 

Solver [‘liblinear’, ‘newton-cg’, ‘lbfgs’] 

GNB Var smoothing [1, …, 10-9] with 100 steps 

GB 

Number of estimators 
(boosting stages) 

[10, 100, 1000] 

Learning rate [0.001, 0.01, 0.1] 

Subsample for fitting the base 
learners 

[0.5, 0.7, 1.0] 

Maximum depth of the 
estimators 

[3, 7, 9] 

DT 

Maximum depth of the tree [3, 5, 7, 9] 

Maximum features for the 
best split 

[‘log2’, ‘sqrt’] 

Minimum number of samples 
for a leaf node 

[1, 3, 5, 7, 9] 

Criterion to measure the split 
quality 

[“gini”, “entropy”] 
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3. RESULTS 

An example of comparison between hot and cold TS (> 0 and 
< 0, respectively) is reported in Figure 2 for IBI, EDA, SKT, and 
EEG signals. It is possible to note that IBIs (a) have a higher 
duration in the case of TS < 0, given that HR decreases in cold 
conditions, as expected in the case of cold defence [47]. The skin 
temperature (b) directly reflects the ambient temperature, hence 
SKT signals decrease with temperature. The EDA signal (c) 
shows a higher intensity in case of hot TS; in fact, the skin 
conductivity increases with sweat production. Indeed, the SNS 
controls this phenomenon, and its activation is more marked in 
warm condition, when heat dissipation mechanisms are actuated 
[48]. Concerning EEG (d), it is possible to observe that the PSD 
values decrease in the case of hot TS; in particular, when the 
subject is in a cold environment, her/his attention level tends to 
be higher (corresponding to an intense mental activity) and this 
is reflected at least in Beta and Gamma waves (frequency 
> 35 Hz) [49]. 

3.1. ML-based classification 

The feature selection process led to the definition of a peculiar 
feature subset (Table 2); this was used as input for the ML 
classifiers to be tested. These features are from all the considered 
physiological signals domains: 8 from PPG, 4 from EDA signal, 
4 from EEG, and 1 feature from SKT signal. 

The performance metrics for all the considered ML classifiers 
are reported in Table 3. In the configuration with the input 
features coming from all the recorded physiological signals, the 
best results are achieved by the RF classifier (Accuracy: 0.86; 
Sensitivity: 0.87; Precision: 0.80; AUC: 0.90), with a very good 
ability in distinguishing between hot and cold TS. The second-
best performing classifiers are GB and GNB (Accuracy: 0.80). 
However, GNB reports a slightly higher Sensitivity (0.88 against 

0.86 of GB), proving a better performance in retrieving the 
instances of interest. All the other tested classifiers, namely kNN, 
LR, and DT, provide an Accuracy <0.80, but still good (i.e., 0.77, 
0.73, and 0.70, respectively). It is worthy to underline the optimal 
Sensitivity of kNN algorithm, which is even the best one among 

 

Figure 2. Examples of a) IBI (sampling frequency: 64 Hz), b) EDA (sampling frequency: 4 Hz), c) SKT (sampling frequency: 4 Hz), and d) EEG signals (PSD in 
logarithmic values) in case of cold and hot TS (blue and red lines, respectively, for a), b), and c) subfigures). 

Table 2. Feature subset selected as input to the ML classifiers. 

Feature and description Signal 

RMSSD: root mean square of successive RR interval differences PPG 

pnni_20: percentage of successive RR intervals exceeding 20 ms PPG 

mean_temp: mean skin temperature SKT 

Lfnu: Relative power of low-frequency band (0.04–0.15 Hz) in 
normal units 

PPG 

Cvsd: Coefficient of variation of successive differences between 
RR intervals 

PPG 

Tonic_STD: Standard deviation of tonic component EDA 

gamma_tp9: Power of gamma band EEG 

pnni_50: Percentage of successive RR intervals exceeding 50 ms PPG 

Sdsd: Standard deviation of differences between adjacent NN 
intervals 

PPG 

lf_hf_ratio: Ratio of LF-to-HF power PPG 

relative_gamma_tp10: Relative power of gamma band, TP10 
electrode 

EEG 

Tonic_perc25: 25th percentile of tonic component EDA 

Tonic_quartdev: Quartile deviation of tonic component EDA 

relative_gamma_tp9: Relative power of gamma band, TP9 
electrode 

EEG 

Hfnu: Relative power of high- frequency band (0.15–0.4 Hz) in 
normal units 

PPG 

Temporal_asym_delta: Difference between left and right 
hemisphere in delta band 

EEG 

Tonic_mean: Mean value of tonic component EDA 

a) b)

c) d)
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the considered models, highlighting its high capability of 
identifying the relevant instances. 

PPG signal provides 8 out of 17 of the selected features used 
as input; if it is true that it delivers a lot of information, it should 
be reminded that it also brings many variability sources, which 
are intrinsic of the signal nature itself. Hence, an important part 
of uncertainty could be attributable to the multiple interfering 
sources to which it is prone: motion artefacts, illuminating 
conditions, skin tone, etc. Hence, particular attention to the 
features extracted from PPG signal (HRV analysis) was then paid 
in the uncertainty analysis, considering a cautionary uncertainty 
range for its values. 

3.2. Monte Carlo simulation results 

Regarding the uncertainty analysis, it can be stated that the 
model appears to be quite robust against the uncertainty 
estimated for the input metrics. In particular, from the results 
reported in Figure 3, it is possible to observe that the expanded 
uncertainty on the model performance in terms of accuracy 
turned out to be equal to ± 0.04 (k = 2). This means that, despite 
the significant perturbations on the model inputs, its 
performance remains very good and stable, i.e., > 0.82 (lower 
bound of 95 % of the coverage interval). The probability 
distribution of the model accuracy obtained with the Monte 
Carlo simulation is reported in Figure 2. 

Concerning the sensitivity analysis, the results are reported in 
Table IV; it is possible to note that the PPG signal is the one 
mostly influencing the variability of the results, together with the 
EDA signal. Less influence is given by the uncertainty of the 
EEG and SKT signals. The sum of the sensitivity indexes S(xi) 
is 99.5 %, near to the unity, so the model is additive, and its 
inputs can be considered as uncorrelated. 

4. DISCUSSION AND CONCLUSIONS 

In the present manuscript, the authors used features extracted 
from different types of physiological signals acquired through 
wearable devices to train ML-based models for the classification 
of thermal sensation (TS). In particular, EEG, PPG, EDA, and 
SKT signals were considered, since a previous preliminary study 
by the same authors [18] verified the possibility to exploit them 
for TS assessment. The post-processing of these signals, carried 
out in both time and frequency domains, allows to obtain 
features that can be ingested by ML classifiers, after a proper 
evaluation and selection based on statistical significance with 
respect to TS. K-nearest neighbor (kNN), Random Forest (RF), 
Logistic Regression (LR), Gaussian Naïve Bayes (GNB), 
Gradient Boosting (GB), and Decision Tree (DT) were tested 
with the optimal feature subset. The results showed that the RF 
model is the best performing one when all the signals are 
exploited as input, achieving an Accuracy of 0.86 (with an AUC 
of 0.90). Indeed, the best Sensitivity was achieved by the kNN 

classifier, probably due to its different nature (kNN makes 
prediction according to the distance between test and training 
data, whereas RF is based on the majority vote). 

Given that the majority of commercial wrist-worn wearable 
devices is based on a PPG sensor, it is worthy to properly 
consider such signal for thermal sensation prediction. Likewise, 
it is fundamental to optimize both the hardware and the whole 
acquisition procedure (e.g., sensor-skin contact pressure) to 
enhance the signal quality and, thus, the reliability of the derived 
parameters. However, all the tested ML models, trained with 
features coming from multimodal signals (i.e., PPG, EEG, EDA, 
and SKT), provided a good Accuracy (always >0.70). This result 
underlines again the high correlation between physiological 
signals and thermal sensation, hence introducing objective 
measurements in the thermal comfort assessment. 

The classification performance of the ML algorithms was 
undoubtedly influenced by the hyperparameters optimization 
procedure, which was performed through Bayesian optimization 
and 10-fold cross-validation. Then, considering all the 
physiological signals as input and found the best configuration 
for the RF classifier (i.e., the best performing one in these 
conditions), the model was subjected to a Monte Carlo 
simulation to evaluate how the input uncertainties propagate and 
reflect on the classifier Accuracy. Such an analysis considered 
Gaussian distributions for all the input features, setting plausible 
uncertainty values, hence evaluated the robustness of the model 
against this variability. The results showed that the Accuracy of 
the prediction model can be obtained with an expanded 
uncertainty of ± 0.04 (k = 2). Such uncertainty is mostly related 
to the uncertainty of the PPG and EDA signals, counting for 
58.7 % and 23.6 % of the output variance, respectively. The 
relatively low perturbation of the model performance with 
respect to the input signals uncertainty leads to the conclusion 
that Personal Comfort Models performance presents a 
contribution of uncertainty due to the inter- and intra-subject 
variabilities. Such variability must be deeply investigated for a 
wider application of these models in real contexts. 

The results from this study can be relevant for the 
development of human-centred indoor environmental control 
systems in the perspective of achieving a sustainable built 
environment within the context of a quite complex climate 

 

Figure 3. Probability distribution of the Accuracy obtained with the Monte 
Carlo simulation applied to the Random Forest model fed with all the 
physiological signals (i.e., PPG, EDA, SKT, and EEG) – with the optimal features 
subset. 

Table 3. Accuracy, Sensitivity, Precision, and AUC achieved by the tested ML 
classifiers with the identified optimal feature subset. 

ML classifier Accuracy Sensitivity Precision AUC 

kNN 0.77 0.96 0.65 0.86 

RF 0.86 0.87 0.80 0.90 

LR 0.73 0.70 0.67 0.78 

GNB 0.80 0.91 0.70 0.86 

GB 0.80 0.83 0.73 0.88 

DT 0.70 0.83 0.59 0.73 
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change. In the future, it would be interesting to widen the 
database collecting data on older subjects, in order to include 
more variability in terms of thermal comfort perception. Indeed, 
physiological response mechanisms vary with age, hence the 
model parameters are different; a study performed on subjects in 
a wide age range would give the possibility to consider also age 
as input parameter for classification models. The experimental 
campaign data could be also further analysed (and also widened, 
in terms of both numerosity and physiological variability) in 
order to develop Personalized Comfort Models, considering not 
only hot and warm thermal sensation, but also the neutral 
condition. Indeed, some of the considered features (e.g., from 
EDA and SKT signals) have been already proved to be suitable 
for the identification of neutral TS [49]. These models could 
cover pivotal roles in control and actuation perspectives within 
living environments, focusing on the real users’ needs. This could 
lead to the definition of a sustainable ecosystem with automated 
control abilities, where the environmental parameters of a 
building would be controlled with the support of data recorded 
by wearable sensors. The use of wearables can be combined with 
ML and AI algorithms, appropriately trained with datasets 
including proper physiological variability and, hence, being able 
to easily adapt to specific users’ needs. In this context, the 
occupants’ physiological conditions, linked to their comfort and 
overall well-being level, cover a twofold role: on the one hand, 
they determine the subject’s well-being (i.e., the target of the 
control system), on the other hand, they represent feedback for 
the built environment control loop. This enables the evaluation 
of the control process effects on the living environment 
occupants. 
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