A learning model for battery lifetime prediction of LoRa sensors in additive manufacturing
DOI:
https://doi.org/10.21014/actaimeko.v12i1.1400Keywords:
LoRa, LoRaWan, IIoT, battery lifetime, machine learningAbstract
Today, an innovative leap for wireless sensor networks, leading to the realization of novel and intelligent industrial measurement systems, is represented by the requirements arising from the Industry 4.0 and Industrial Internet of Things (IIoT) paradigms. In fact, unprecedented challenges to measurement capabilities are being faced, with the ever-increasing need to collect reliable yet accurate data from mobile, battery-powered nodes over potentially large areas. Therefore, optimizing energy consumption and predicting battery life are key issues that need to be accurately addressed in such IoT-based measurement systems. This is the case for the additive manufacturing application considered in this work, where smart battery-powered sensors embedded in manufactured artifacts need to reliably transmit their measured data to better control production and final use, despite being physically inaccessible. A Low Power Wide Area Network (LPWAN), and in particular LoRaWAN (Long Range WAN), represents a promising solution to ensure sensor connectivity in the aforementioned scenario, being optimized to minimize energy consumption while guaranteeing long-range operation and low- cost deployment. In the presented application, LoRa equipped sensors are embedded in artifacts to monitor a set of meaningful parameters throughout their lifetime. In this context, once the sensors are embedded, they are inaccessible, and their only power source is the originally installed battery. Therefore, in this paper, the battery lifetime prediction and estimation problems are thoroughly investigated. For this purpose, an innovative model based on an Artificial Neural Network (ANN) is proposed, developed starting from the discharge curve of lithium-thionyl chloride batteries used in the additive manufacturing application. The results of experimental campaigns carried out on real sensors were compared with those of the model and used to tune it appropriately. The results obtained are encouraging and pave the way for interesting future developments.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Alberto Morato, Tommaso Fedullo, Stefano Vitturi, Luigi Rovati, Federico Tramarin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).