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1. INTRODUCTION 

Today, novel and intelligent measurement systems are 
increasingly developed thanks to the Internet of Things (IoT) 
paradigm [1]. Moreover, the combination of IoT with the 
Industry 4.0 [2], [3] paradigm (often referred to as Industrial 
IoT), introduces a number of unprecedented challenges to 
measurement capabilities [4], with the ever-increasing need to 
collect reliable yet accurate data from mobile, battery-powered 
nodes over potentially large areas. In this scenario, one of the 
enabling technologies of Industry 4.0 is Additive Manufacturing 
(AM). Basically, AM makes it possible to create 3D objects, such 

as prototypes of possible products designed with CAD tools, 
without the burdens usually imposed by traditional production 
systems in terms of work organization, delivery times and 
material utilization. This has a tremendous impact on 
manufacturing processes, making them more efficient, timely, 
scalable, and customizable [5], [6]. 

The benefits resulting from the introduction of AM also place 
unprecedented demands on sensor systems and related 
measurement techniques. In fact, there are several AM 
applications, such as those based on powder-bed processes, 
where suitable sensor systems need to be developed to collect 
data during the manufacturing process of potentially large 
objects, e.g., for early detection of defects and anomalies, and for 

ABSTRACT 
Today, an innovative leap for wireless sensor networks, leading to the realization of novel and intelligent industrial measurement 
systems, is represented by the requirements arising from the Industry 4.0 and Industrial Internet of Things (IIoT) paradigms. In fact, 
unprecedented challenges to measurement capabilities are being faced, with the ever-increasing need to collect reliable yet accurate 
data from mobile, battery-powered nodes over potentially large areas. Therefore, optimizing energy consumption and predicting battery 
life are key issues that need to be accurately addressed in such IoT-based measurement systems. This is the case for the additive 
manufacturing application considered in this work, where smart battery-powered sensors embedded in manufactured artifacts need to 
reliably transmit their measured data to better control production and final use, despite being physically inaccessible. A Low Power Wide 
Area Network (LPWAN), and in particular LoRaWAN (Long Range WAN), represents a promising solution to ensure sensor connectivity 
in the aforementioned scenario, being optimized to minimize energy consumption while guaranteeing long-range operation and low-
cost deployment. In the presented application, LoRa equipped sensors are embedded in artifacts to monitor a set of meaningful 
parameters throughout their lifetime. In this context, once the sensors are embedded, they are inaccessible, and their only power source 
is the originally installed battery. Therefore, in this paper, the battery lifetime prediction and estimation problems are thoroughly 
investigated. For this purpose, an innovative model based on an Artificial Neural Network (ANN) is proposed, developed starting from 
the discharge curve of lithium-thionyl chloride batteries used in the additive manufacturing application. The results of experimental 
campaigns carried out on real sensors were compared with those of the model and used to tune it appropriately. The results obtained 
are encouraging and pave the way for interesting future developments. 

mailto:federico.tramarin@unimore.it


 

ACTA IMEKO | www.imeko.org March 2023 | Volume 12 | Number 1 | 2 

process qualification [7]. This is the case addressed in this paper, 
where a large powder-bed 3D printer is capable of producing 
different types of artifacts using mixtures of powders, derived 
from recycled materials or natural components such as sand, 
water and chemical-free reagents [8]. A peculiarity of the system 
is that the artifacts are permanently equipped with sensors. These 
sensors are embedded in the manufactured objects at the 
beginning of the production phase and cannot be physically 
accessed. The sensors are needed to provide measurements of 
appropriate variables, such as temperature and humidity, which 
are used for two main purposes: i) during artifact production, as 
mentioned above, they provide feedback that allows on-line 
tuning of the 3D printing process and assist in defect detection 
[9]; ii) during the artifacts' lifetime, when they are in their final 
positions, sensor data is collected to perform off-line analysis as 
well as to monitor environmental conditions. A system with 
these specifications has been developed as part of an Italian 
regional project called ADMIN-4D (ADditive Manufacturing & 
INdustry 4.0 as innovation Driver). 

Of course, to achieve the above goals, the sensors must also 
be able to communicate and send the measured data to the 
correct destination(s). For this purpose, technologies such as 
Low Power Wide Area Networks (LPWANs) represent a 
promising solution to ensure sensor connectivity, as they are 
optimized to minimize energy consumption while ensuring long-
range operation and low-cost deployment. In the application 
addressed in this paper, one of the most representative 
implementations was chosen, namely LoRaWAN (Long Range 
WAN) [10], [11]. It is worth noting that the application of 
LoRaWAN in the industrial scenario has been extensively 
analyzed [12], [13], proving its effectiveness, possibly after a 
suitable protocol optimization. 

Therefore, the targeted AM application poses several 
challenges to the sensor network system, and three main issues 
must be evaluated for the efficient collection of measurement 
data: i) the effective acquisition of readings from sensors 
embedded in artifacts; ii) the transmission range of the sensors; 
iii) the lifetime of the batteries used by the sensors. We have 
already investigated both the actual transmission capability of the 
embedded sensors and the covered distances in our previous 
work [14]. The results are satisfactory. It was found that 
transmission ranges of several tens of meters could be effectively 
achieved with a low packet loss rate and under different 
environmental conditions, in line with the requirements. 

In this paper, we deal extensively with the latter issue, namely 
battery life. Obviously, this is a critical aspect for the whole 
project, since once an artifact has been produced, its embedded 
sensors can no longer be accessed, nor can its batteries be 
replaced/recharged. Consequently, once the lifetime of the 
batteries has expired, measurements from the sensors will no 
longer be transmitted. It should also be noted that battery 
lifetime prediction is of paramount importance in several other 
IIoT-based applications, such as cooperative robotics [15], [16]. 
Battery lifetime prediction is closely related to the battery 
discharge model. Unfortunately, the definition of an analytical 
discharge model, although theoretically possible, is difficult to 
achieve from the data typically provided by the manufacturers. 

Therefore, in this paper we present a novel approach to 
battery discharge modeling based on a hybrid scheme where a 
static model and a machine learning (ML) one coexist. In 
particular, we use an artificial neural network (ANN), which is 
necessary to overcome the nonlinearity of battery capacity as a 
function of temperature, and which is trained and validated using 

data derived from the battery datasheet. This ANN model is then 
used in conjunction with a closed-form static battery model (e.g., 
an accurately adapted version of the Matlab model) and finally 
introduced in the context of the AM application described. The 
ultimate goal is to develop a model that can accurately predict the 
battery life of sensors under various operating conditions, 
including changes in temperature, power consumption, and 
other variables. The model should also be able to account for any 
nonlinearities that may occur, such as the effect of extreme 
temperatures on battery performance.  

Experimental campaigns were conducted to compare the 
predictions of the models with real battery data. The models were 
then configured to emulate typical operating conditions to 
achieve realistic battery life predictions. As a result, it will be 
possible to more accurately predict sensor lifetime and optimize 
communication parameters to ensure maximum battery life. 

The paper is organized as follows. Section 2 gives a brief 
description of the targeted AM application and of the ADMIN-
4D project and outlines the requirements for sensor data 
acquisition. Section 3 discusses some relevant related works and 
provides an overview of the contributions provided by this 
paper. Section 4 introduces the adopted sensors and reports 
considerations about battery selection and characterization. 
Section 5 describes the adopted dynamic battery discharge model 
and its tuning, whereas Section 6 presents the developed data-
driven discharge model. Section 7 then presents the outcomes of 
experimental assessments and compares them with the model 
results. Section 8 presents battery life predictions in the 
operational context of ADMIN-4D. Finally, Section 9 concludes 
the paper with some considerations for future developments. 

2. THE ADMIN-4D PROJECT 

The structure of the ADMIN-4D project is shown in 
Figure 1. Its operation is characterized by two distinct phases, 
namely production and final deployment. The production phase, 
in which an artifact is created, takes a variable amount of time, 
depending mainly on the size of the artifact itself. Typical 
production times can be tens of hours. During this phase, 
sensors are embedded in the artifact and immediately begin 
transmitting data that is collected by the 3D printer's automation 
system and used for online feedback. As discussed in the 
previous Section, the system uses a sensor network based on 
LoRaWAN. Specifically, a LoRaWAN Gateway (GW) device is 
connected to the 3D printer's automation system via the 
ADMIN-4D intranet and provides connectivity to the embedded 

 

Figure 1. Automation System of the 3D Printer  
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sensors that act as LoRaWAN End Devices (EDs). After 
production, the final deployment phase begins, the artifacts are 
placed in their final locations and the LoRaWAN Gateway device 
is positioned within range of the sensors and connected to the 
Internet. This allows sensor data to be transmitted to a remote 
cloud for offline analysis. 

For the sake of clarity, the two types of sensor data 
transmission shown in Figure 1 (referred to as “sensor data for 
on-line feedback” and “sensor data for off-line analysis”, 
respectively) will never occur simultaneously. In fact, during the 
production phase of an artifact, only the Intranet connection is 
used, while during the final deployment phase, only the Internet 
communication is active. 

Battery lifetime of embedded sensors is strongly influenced 
by the periodicity of their transmission as well as the amount of 
data transmitted, which directly affects the time required for each 
transmission. In fact, transmission is the operating situation 
where the LoRa interface of the sensors has the higher power 
consumption. In the context of the intended application, the 
transmission time depends on the operational phase (production 
or final deployment), while the amount of data transmitted 
remains the same throughout the life of the artifacts. Obviously, 
during the production of an artifact, short transmission times are 
required (relative to the time needed to produce the artifact), 
since sensor data is used for on-line feedback. Conversely, in the 
final deployment phase, there is no need for strict timing and 
periods can be relaxed. Table 1 shows the typical values of 
periods and amount of data exchanged used in the following 
battery life analysis. 

3. RELATED WORKS AND CONTRIBUTION 

Some interesting contributions dealing with the power 
consumption aspects of LPWANs are available in the scientific 
literature. In [17], the authors provide a comprehensive 
assessment of the power consumption of commercially available 
modules by defining theoretical models based on real data 
obtained from experimental sessions. In [18], the energy 
consumption of a solid waste management system is addressed 
in a simulated scenario that also allows the estimation of battery 
life. Similarly, the authors of [19] present a self-optimizing 
wireless water level monitoring system that can improve battery 
life based on operating conditions. Energy consumption is also a 
major constraint for the authors of [20], where a LoRa-based 
localization system is addressed. In [21], a battery lifetime analysis 
is proposed. Interestingly, it refers to LoRa sensors deployed in 
manholes, which are difficult to access for maintenance 
purposes.  

Nevertheless, an effective a priori estimation of the battery 
lifetime is crucial in the AM application targeted in this 
manuscript, and this can only be achieved with accurate battery 
discharge models. In this direction, models based on machine 
learning (ML) techniques have already been successfully applied, 
since they allow to easily take into account the non-linearities that 
often occur in this context. For example, in [22], an ML-based 
system was used to detect the end of battery life. Furthermore, 
in [23]-[27], ML techniques are used to build models for the state 

of charge, discharge curves, and lifetime prediction of lithium 
batteries. Unfortunately, the models proposed in these works 
cannot be considered in ADMIN-4D because the artifacts 
produced would be expected to operate even under potentially 
extreme weather conditions. Actually, these models were 
developed for generic lithium batteries, but for the intended 
application, heavy lithium batteries were chosen that present very 
different characteristics. 

This highlights the importance of defining a more 
comprehensive battery discharge model, capable of capturing the 
effect of battery performance under different usage conditions, 
such as temperature variations or different configurations of 
sensor communication parameters. Such a model would be an 
essential tool for the design of systems using battery-powered 
sensors, as it would allow the lifetime of the sensors to be 
estimated based on the conditions in which they will be used, and 
therefore decide which communication parameters and sensor 
suite to use to ensure maximum battery life. It is important to 
note that battery discharge curves are generally obtained using 
static parameters such as temperature and discharge current. In 
reality, however, sensors often operate under dynamic conditions 
where these parameters can vary continuously. Therefore, it is 
necessary to use battery discharge models that take these 
variables into account to obtain more accurate results. Moreover, 
given the multiple nonlinearities of the batteries under 
consideration, the ability to simulate the discharge process 
dynamically and under different conditions allows to predict in 
advance possible problems in the on-board sensors, such as 
those due to voltage and temperature variations, allowing 
improvements and optimizations of the measurement system 
before the final deployment. 

4. SENSORS AND BATTERIES SELECTION 

In consideration of the peculiarities of the AM application 
described in the previous sections, the board hosting sensors and 
communication interfaces, which must be embedded within the 
manufactured artifact, should also present suitable mechanical 
and waterproof properties. We identified a good candidate in the 
Tinovi PM-IO-5-SM device [28], which can host different type 
of sensors and is already equipped with a LoRa interface, hence 
acting as a LoRaWAN end device in the targeted LoRaWAN 
sensor network scenario. In the adopted configuration, the 
Tinovi system provide both humidity and temperature 
measurements (the latter in the range [-20, 70] °C with an 
uncertainty of 0.6 °C) transmits information about the battery 
state of charge with a good resolution. Another important 
consideration is that the LoRa interface of such sensors can be 
configured using Over-The-Air Activation (OTAA) mode to 
activate the end device. In fact, artifacts are typically moved from 
the production site to the final deployment site, so the sensors 
need to be able to join different LoRaWAN networks during 
their lifetime. Considering that the sensor becomes inaccessible 
after production, the sensor must use OTAA so that the device 
address and session key required to join a network are 
dynamically assigned. OTAA also allows network parameters 
(e.g., measurement’s transmission period) to be changed 
remotely and dynamically. 

The Tinovi sensors can be powered by different types of 
batteries. We have considered those listed in Table 2, where they 
are compared for energy density and temperature range. In fact, 
the specific AM printing process requires the batteries to work 
in a wide temperature range. For this reason, we chose lithium 

Table 1. Transmission periods and data payloads. 

Phase Period Data Amount per Sensor 

Production ≤ 300 s 20 bytes 

Final Deployment ≥ 3600 s 20 bytes 
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thionyl chloride (LiSOCl2) batteries. In fact, they are specifically 
designed to operate over a wide [-60, +85] °C temperature range, 
which makes them suitable for military and medical applications, 
locking mechanism or metering applications that require long life 
without the need to replace the battery [29]–[30]. It should be 
noted that ADMIN-4D also requires a sufficient energy density 
to keep the size of the batteries as small as possible and to ensure 
that they can be easily inserted into the artifacts. For this reason, 
the widespread and cheap SLA batteries are not considered in 
this study. Furthermore, the energy density of the selected 
LiSOCl2 batteries is considered sufficient for the application. 

4.1. Modelling of Lithium Thionyl Chloride batteries 

In a first stage, SAFT LS 17500 LiSOCl2 batteries were tested 
as they are widely available off-the-shelf [31]. Their main 
characteristics are summarized in Table 3. 

Unfortunately, the battery manufacturer does not provide a 
public dataset for the different measurements provided in the 
battery datasheet. For this reason, we have derived our data from 
the graphs contained in the datasheet using a graphical data 
extraction method. The available data consists of i) voltage 
profiles, ii) the correlation between plateau voltage and current 
drawn at different temperatures and, finally, iii) the relationship 
between capacity and current drawn at different temperatures. 
The results of this extraction are represented with solid lines in 
Figure 2, Figure 3, and Figure 4. Considering the high resolution 
of the available images, the accuracy with which the curves are 
reproduced here is rather good. Indeed, it is also possible to 
provide an estimate of the uncertainty associated to the data 
points. In fact, each curve has been originally sampled with 25 
data points, and for Figure 2 we have a maximum uncertainty of 
2.3 mV, while for Figure 3 it is 4.5 mV. For the data points 
related to capacity in Figure 4 the uncertainty is 23 mA h. 

As can be seen in Figure 2, the discharging profiles strongly 
depend on the current drawn, i.e., the current absorbed by the 
battery. The longest lifetime is 2523 hours, obtained with 
constant 1.3 mA current. It can also be seen that the level of the 
plateau voltage decreases gradually at higher current levels. This 
effect is due to the high nonlinear internal resistance, estimated 
to be 13.6 Ω on average. This voltage drop is not a negligible 
effect, as the drop below the minimum operating voltage of the 
sensor can affect its actual functionality.  

The voltage variations are also evident considering discharge 
curves at different temperatures, as reported in Figure 3. As can 
be seen, for a given current, there are considerably different 
plateau voltage values, depending on the working temperature. 
This behaviour may represent an issue in several applications (the 
ADMIN-4D project is one of them, actually) where the batteries 
used to feed the sensors are exposed to highly variable climatic 
conditions. 

Temperature and current drawn also impact on the total 
available battery capacity. From Figure 4, it is clear that these 

Table 2. Comparison of different battery chemistries. 

Chemistry 
Energy density 

(W h L−1) 
Temperature 

range (°C) 

Sealed Lead Acid (SLA) 70 -40 / +60 

Alkaline (𝑍𝑛 − 𝑀𝑛𝑂2) 340 -20 / +70 

Lithium cobalt oxide (𝐿𝑖𝐶𝑜𝑂2) 560 -20 / +60 

Lithium manganese nickel 
(𝐿𝑖𝑁𝑖𝑀𝑛𝐶𝑜𝑂2) 

580 -20 / +60 

Lithium thionyl chloride (𝐿𝑖𝑆𝑂𝐶𝑙2) 350 -60 / +85 

Table 3. SAFT LS 17500 battery specification. 

Description Specification 

Rechargeable No 

Nominal Voltage 3.60 V 

Nominal Capacity 3600 mA h 

Nominal cut-off voltage 3.3 V 

Operating Temperature -60 °C to 85 °C 

 

Figure 2. Typical discharge profile at 20 °C for the SAFT LS 17500 battery. 
Extracted from [26]. 

 

Figure 3. Dependence of the plateau voltage from current drawn at different 
temperatures. Extracted from [26]. 

 

Figure 4. Dependence of the total available capacity from current drawn at 
different temperatures. Extracted from [26]. 
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types of cells are susceptible to the Peukert’s effect [32], which 
lowers down the total available battery capacity depending on the 
current draw and temperature, with the consequent reduction of 
the battery lifetime. 

It can be concluded that the design of an accurate battery 
lifetime model is a challenging task that requires the 
consideration of several different aspects. Admittedly, accurate 
models can be developed by exploiting the equations describing 
the chemical interaction between the anode and cathode. Such 
models allow to obtain a very high accuracy, since they depend 
on the intrinsic parameters of the battery. Unfortunately, they are 
difficult to define and tune for commercially available cells, since 
the information available for such devices is typically insufficient.  

Therefore, to address this challenge, in this work we have 
adopted a hybrid approach, where a suitably tuned generic 
battery dynamic model is used in conjunction with a data-driven 
approach based on Artificial Neural Networks. In the following 
section, we will discuss the tuning of the first dynamic model, 
while the ANN approach will be discussed in Section 7. 

5. TUNING OF THE GENERIC BATTERY DYNAMIC MODEL 

Several models for generic purpose lithium-ion based 
batteries have been proposed in the scientific literature. A widely 
used one is discussed in [33] and its implementation is currently 
found in Matlab Simscape under the name Generic Battery 
Dynamic Model, hereafter referred to as GBDM. This model 
actually describes the behaviour of a generic rechargeable battery 
using a combination of three stages. First, a (short) exponential 
voltage drop occurs suddenly when the battery is fully charged 
and starts to deliver energy; this is followed by a so-called 
nominal region (a plateau region) where the energy is delivered 
from the battery with a quasi-constant voltage level until the 
voltage starts to drop below the nominal battery voltage level. 
The third section is related to the sudden loss of energy, where 
the battery is discharged, and the voltage drops abruptly. The 
GDBM is implemented by an equivalent feedback system, whose 
parameters can be tuned to adequately model different battery 
typologies and their discharge characteristics.  

In this regard, we considered the parameters provided by the 
battery manufacturer, in particular the discharge profiles specific 
to the SAFT LS 17500 LiSOCl2 batteries shown in the previous 
Figure 2 to Figure 4. From the discharge profile at the nominal 
current of 1.3 mA, we were able to extract the required model 
parameters that are reported in Table 4. The tuning process of 
the GDBM model resulted in the discharge curves shown in 
Figure 5, that have been subsequently derived for different 
current values (solid lines) and compared with those reported in 
the battery datasheet (dotted lines). 

As can be observed in the figure, the model discharge profiles 
(and thus the lifetime estimate) are in good agreement with those 
declared by the manufacturer for current values of 1.3, 3 and 
8 mA. For higher currents, the experimental and model trends 
are completely different to the point that the model estimate of 
the discharge profile at 120 mA is completely inconsistent with 
the experimental one (in fact, it is not even visible in the plot).  

The above voltage profiles can be compared from a numerical 
point of view by looking at both the average deviation between 
the experimental and model curves and the predicted battery life. 
The former can be evaluated by the Root Mean Square Error 
(RMSE), calculated as the root of the average squared deviations 
between the model predicted value and the expected voltage level 
of the battery, as extracted from the manufacturer's discharge 
curve for a given current and after a given time. Table 5 reports 
the obtained values, where it can be observed that the RMSE is 
relatively low for low currents and consistently increases as the 
current increases. Analogously, the same trend can be observed 
in the lifetime estimation, although in a less obvious way, because 
the estimated lifetime is only consistent with the nominal current 
of 1.3 mA used for the tuning process. 

The obtained results are not surprising since, as already 
pointed out, the lithium chloride thionyl batteries present a 
considerable internal resistance that varies non-linearly with the 
current draw. Also, such batteries are affected by the Peukert’s 
effect, and the resistance is almost constant at the nominal 
current and tends to decrease at higher currents. Unfortunately, 
this model does not consider these effects since, as a matter of 
fact, it keeps the resistance constant for every current draw, so 
that the Peukert’s effect is not considered at all. 

Table 4. Parameters of the GDBM model, for the characterization of the 
discharge profile. 

Parameter Value 

Nominal voltage 3.6 V 

Maximum capacity 3.6 A h 

Fully charged voltage 3.67 V 

Nominal discharge current 1.3 mA 

Internal resistance 13.6 Ω 

Nominal ambient temperature 20 °C 

Second ambient temperature −40 °C 

Maximum capacity at −40 °C 2.744 A h 

Initial discharge voltage at −40 °C 3.12 V 

 

Figure 5. Comparison between the discharge profiles at 20 °C extracted from 
the datasheet (dotted lines) and derived from the tuned GBDM model (solid 
lines), for 5 different current values. 

Table 5. Comparison between the discharge profile (at 20 °C) extracted from 
the datasheet and the GBDM model. 

Current 
(mA) 

Lifetime (h) RMSE in 
voltage profile 

 Datasheet Estimated Error (%) (V) 

1.3 2523.88 2523.92 0.00 2.97 · 10-4 

3.0 1140.39 1093.70 4.09 1.03 · 10-3 

8.0 425.76 410.14 3.67 1.47 · 10-3 

33.0 90.38 99.43 10.02 1.18 · 10-1 

120.0 17.20 27.34 58.95 9.73 · 10-1 
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As discussed earlier, temperature is another source of 
complexity and nonlinearity that the GDBM takes into account, 
although it cannot reproduce the same behaviour as the lithium 
chloride thionyl batteries. This is visually illustrated in Figure 6, 
which shows the discharge profile obtained at a constant 
discharge current of 1.3 mA for different temperatures. In the 
figure, five different temperatures are considered, and the 
discharge curves obtained from the GDBM are shown with solid 
lines, while the manufacturer's curves are shown with dotted 
lines. The graph clearly indicates that the match between model 
and datasheet is rather satisfactory only for temperatures of 
20 °C and −40 °C, that are those used for tuning the model, as 
reported in Table 4. Conversely, for other temperatures a 
significant discrepancy can be observed, for example, at 55 °C 
and 70 °C. Looking at Figure 6, it can also be observed that both 
the plateau voltage and total capacity depend on the temperature 
in a strongly non-linear way. Moreover, in the leftmost part of 
the solid GDBM curves, the exponential variation of the voltage 
is evident (notice that it is linear since the x-axis is in logarithmic 
scale). This behaviour is less evident only for T = 20 °C in both 
Figure 5 and Figure 6, since the model is tuned around that 
temperature, confirming the temperature dependence.  

The results obtained from the tuned GDBM model suggest 
that it is able to provide a satisfactory description of the main 
features of the discharge behaviour for the adopted LiSOCl2 
batteries but limited to the cases close to the operating points 
selected for the model calibration. In the next section, a proposal 
to overcome this limitation is presented, based on a data-driven 
approach to be used in conjunction with the GDBM approach. 

6. A DATA-DRIVEN DISCHARGE MODEL 

Models based on a data-driven approach may prove 
advantageous to address the negative effects due to non-
linearities that are experienced with models based on battery 
parameters, such as the GDBM discussed in the previous section 
[34]. In particular, an approach that has already proven its 
effectiveness [35] relies on the use of Artificial Neural Networks 
(ANNs) to profitably approximate the nonlinear functions 
related to the battery discharge behaviour with the desired 
accuracy. Therefore, to address the issues of the dynamic battery 
model that have been highlighted in the previous section, in 

particular related to the nonlinear dependence with the 
temperature and the internal resistance, we exploited a suitable 
ANN with the aim of increase the estimation accuracy of the 
lifetime duration of LiSOCl2 batteries. 

In particular, we implemented a Multiple-Layer Perceptron 
Neural Network (MLPNN) since it demonstrated to be 
promising in solving similar problems [36]. The structure of the 
MLPNN is shown in Figure 7. In the input layer, the input 
parameters are State of Charge (SOC), temperature (T) and 
current drawn (C). Two hidden layers, each with 64 neurons, 
realize the non-linear transformation from the input layer. 
Finally, the output layer provides battery voltage (V) and lifetime 
estimation (t).  

The structure of the MLPNN was chosen with an embedded 
system implementation in mind, so that it can be deployed 
directly in the sensor, which can change the period and 
transmission parameters based on the estimated duration. In 
particular, the minimum number of neurons and hidden layers 
was chosen to solve the estimation problem without causing 
overfitting problems, while ensuring low memory consumption 
and computation time. 

The training and validation phases of the applied ANN clearly 
require a consistent and sufficiently large dataset. Unfortunately, 
as mentioned in Section 4.1, the battery manufacturer does not 
provide a public dataset for the different measurements provided 
in the battery datasheet, which led us to use a graphical extraction 
procedure. In order to obtain an adequate amount of data to train 
and then identify complex relationships between inputs and 
outputs, we needed to apply a data augmentation technique to 
artificially increase the size of the dataset from the initial 25 
points. To do this, we used a spline curve to fit the original raw 
data points while minimizing the RMSE. Given the low 
uncertainty associated with the extracted data, and the fact that 
the RMSE in this fit was kept extremely low, the uncertainty 
associated with the data inferred from the spline can be 
considered consistent with those revealed in Section 4.1.  

The obtained augmented dataset consists of 250000 unique 
entries, which were split between training and validation in a ratio 
of 80%-20%. Other meaningful hyperparameters are shown in 
Table 6. 

As shown in Table 6, the number of training epochs was set 
to 150. This value was determined using the early stopping 
technique to avoid overfitting. The trends of training and 
validation loss are shown in Figure 8. As can be seen from the 
figure, both training and validation loss decrease with the 
number of epochs and almost reach zero. After training the 

 

Figure 6. Comparison between the discharge profile extracted from the 
datasheet (dotted lines) and the GBDM model (solid lines) at different 
temperatures. All the curves are obtained considering a constant discharge 
current of 1.3 mA. 

 

Figure 7. Structure of the adopted MLPNN. 
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model, its behaviour was compared with the experimental data 
obtained from the manufacturer. The results of modelling with 
the MLPNN are shown in Figure 9, where the discharge profiles 
obtained for different currents are reported. Table 7 provides 
more detailed statistics. 

As can be seen, the results obtained are better than those 
obtained with the GBDM model. In fact, although the 
percentage error of the lifetime estimation at 1.3 mA is higher 
than that of the GBDM model, the lifetime estimation error is 
limited to 2% over the whole discharge current range. The 
accuracy of the model on the test data set is also confirmed by 
the RMSE in the voltage profile, which is definitely very limited. 
While for the GBDM model both the lifetime estimation error 
and the MSE increase moving away from the profile where the 
tuning was performed, the MLPNN keeps both metrics bounded 
and rather stable over the different profiles. The advantage of 
using such a model seems clear. In fact, it is able to better 
generalize the estimation problem, giving a higher accuracy in a 
wide range of operating conditions.  

These considerations can be further confirmed by the 
discharge profiles obtained for a constant current of 1.3 mA, but 
for different temperatures. This comparison is shown in 
Figure 10, whereas some statistical details are reported in 
Table 8. Even in this case, the discharge profiles as well as the 
lifetime estimations agree with the experimental ones with a very 
good accuracy, and an estimation error under 6% in the worst 
case. 

7. EXPERIMENTAL ASSESSMENT OF THE PROPOSED 
DISCHARGE MODELS 

In order to evaluate the effectiveness of the proposed models, 
we first performed some experimental tests on the Tinovi smart 
sensor alone. The goal is to verify whether the proposed models, 
tuned on the data provided by the manufacturer, are able to 
provide a consistent prediction of the actual battery behaviour in 
the final system. To increase the reproducibility of the 
experiments, the experimental sessions were conducted in a 
room with a controlled temperature of 20°C, with the Tinovi 
device (namely, the LoRaWAN ED) placed 1 m away from the 
LoRaWAN gateway. 

The adopted Tinovi PM-IO-5-SM smart sensor is configured 
to transmit in each LoRaWAN frame an internal reading of the 
battery voltage, whose value is encoded in binary format to map 
the range from 2.8 V to the maximum value of 4.2 V reached 
during charging. The resolution of the voltage reading is 1%, 
which correspond to 14 mV. During these tests, the sensor is 
configured to transmit a packet with a period of five (5) minutes, 
containing the measured variables (mostly, temperature and 
humidity) and the information about the battery status. It should 
be noted that the sensor can be in two different states, active and 
sleep: the former is the state in which the sensor is either sending 
or receiving data from its probes, while the latter is the idle state 
in which the sensor does not perform any action. The main 

Table 6. Parameters for the characterization of the discharge profile in the 
MLPNN model. 

Parameter Value 

Activation function Tanh 

Loss function MSE 

Optimizer Adam 

Learning rate 0.0001 (non-scheduled) 

Epoch 150 

Batch size 512 

Table 7. Comparison between the discharge profile at 20 °C extracted from 
the validation dataset and the MLPNN model. 

Current 
(mA) 

Lifetime (h) RMSE in 
voltage profile 

 Datasheet Estimated Error (%) (V) 

1.3 2523.88 2568.19 1.76 3.10 · 10-4 

3.0 1140.39 1122.50 1.56 7.41 · 10-5 

8.0 425.76 425.52 0.06 9.33 · 10-5 

33.0 90.38 89.21 1.29 2.57 · 10-5 

120.0 17.20 16.94 1.51 1.19 · 10-5 

Table 8. Comparison between the discharge profile at constant discharge 
current 1.3 mA for different temperatures. 

Temperature 
(°C) 

Lifetime (h) RMSE in 
voltage profile 

 Datasheet Estimated Error (%) (V) 

-40.0 1666.21 1760.29 5.65 3.17 · 10-4 

-20.0 2110.56 2233.70 5.83 3.44 · 10-4 

20.0 2523.66 2568.19 1.76 3.10 · 10-4 

55.0 1883.47 1944.04 3.22 3.33 · 10-4 

70.0 1688.57 1711.55 1.36 3.31 · 10-4 

 

Figure 8. Training and validation loss. 

 

Figure 9. Comparison between the discharge profile at 20 °C on the test 
dataset and the one generated by the MLPNN. Markers represent the test 
data while solid lines represent the data generated by the model. 
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parameters used to configure the Tinovi smart sensor during 
these experimental sessions are shown in Table 9.  

The average current consumption of the sensor, as shown in 
the table, is 2.6 mA. We have therefore used the two proposed 
models to generate the corresponding discharge curves for this 
specific current and at a constant temperature of 20°C. The 
estimates of the voltage profiles were then compared with the 
results of the real voltage measurements taken by the sensor. The 
results are shown in Figure 11 and Table 10, respectively. 

The comparison highlights that both models produce similar 
discharge profiles, and in a rather good accordance with each 
other. In particular, the MLPNN is able to better approximate 
the nominal (plateau) voltage phase and is very close to the actual 
measured final fast discharge phase. Conversely, the GBDM is 
more precise at modelling the starting point and the initial part 
of the discharge phase, where the voltage starts to drop below 
the nominal value. Definitely, MLPNN provides a higher 
accuracy in the prediction of both the voltage values and the total 
battery lifetime, as can be seen from Table 10. In fact, the 
GBDM model tends to overestimate the plateau and to slightly 
underestimate the lifetime of the battery. 

Another aspect that affects the power consumption of the 
sensor is the spreading factor (SF) adopted by the LoRa modules. 

In fact, the use of a higher SF (at the same transmit power, of 
course) allows a more robust transmission, but at the cost of 
longer transmission times, which consequently result in a higher 
power consumption of the whole sensor. For example, in the 
case of the Tinovi PM-IO-5-SM, the transmission of 20 Bytes 
with SF12 increases the time in the active state of the ED from 
5 s to 6 s (remember that the packet airtime with SF12 is 
1810 ms). As a result, the average current required increases from 
2.6 mA to 3.1 mA, with a corresponding decrease in battery life.  

Based on the outcomes of the previous experiment, the 
MPLNN model can be profitably exploited to estimate the 
battery lifetime both at different temperatures and for a higher 
SF. The results of this analysis are shown in Table 11, which 
confirms a decrease of about 16-17% in battery life when moving 
from SF = 7 to SF = 12.  

8. BATTERY LIFE ESTIMATION IN THE ADMIN-4D 
APPLICATION CONTEXT 

In this section, the developed battery models have been used 
to estimate the lifetime in the real application context, i.e., 
considering the whole 3D printing process of an artifact 
(production phase) and its subsequent positioning at the final site 
(deployment phase), where sensor data is transmitted to the 
remote cloud. It should be noted that the production of a real 

Table 9. Parameters adopted in the experimental setup. 

Parameter Value 

Transmission frequency 868 MHz 

Spreading factor 7 

Bandwidth 125 kHz 

Code rate 4/5 

Payload length 20 

Sleep time 300 s 

Wake-up + acquisition + transmission time ∼ 5 s 

Sleep current consumption 0.15 mA 

Active current consumption 150 mA 

Average current consumption 2.6 mA 

Module operating temperature range −20 °C – +70 °C 

Voltage operating range 2.5 V – 6 V 

Output power 14 dBm 

 

Figure 10. Comparison between the discharge profiles from the validation 
dataset and the ones generated by the MLPNN, at different temperatures. 
Markers represent the validation data while line represent the data 
generated by the model. All the curves are obtained considering a constant 
discharge current of 1.3 mA. 

Table 10. Evaluation statistics relevant to the curves in Figure 11. 

 Lifetime  
(h) 

Lifetime error 
(%) 

RMSE 
(V) 

Experimental 1323.94 - - 

MLPNN 1322.32 0.12 2.33 · 10-4 

GBDM 1302.38 1.63 1.06 · 10-3 

 

Figure 11. Comparison between the discharge profiles generated by the 
MLPNN and the GDBM models, with respect to the experimentally measured 
one. Controlled environment, T = 20 °C, sensor only. 

Table 11. Battery lifetime estimation using the MLPNN model at different 
temperatures for SF = 7 and SF = 12. 

 Temperature  
(°C) 

Lifetime  
(h) 

SF = 7 

-20 1126.90 

20 1323.94 

70 938.56 

SF = 12 

-20 928.30 

20 1112.94 

70 784.43 



 

ACTA IMEKO | www.imeko.org March 2023 | Volume 12 | Number 1 | 9 

artifact is a process that takes 72 h. In this phase, the sleep time 
of the LoRaWAN EDs (which corresponds to the period of 
sensor data transmission) was set to 300 s, in accordance with the 
values given in Table 1. Subsequently, in the final deployment 
phase, the sleep time was increased to 3600 s in order to 
maximize battery life while maintaining the required periodicity 
of measurement data for monitoring purposes. With these values 
for the sleep period duration, the resulting average current 
consumption is about 2.6 mA in the production phase and 0.35 
mA in the final deployment phase. 

The two phases are clearly very different from each other, 
both in terms of power consumption and temperature range. 
Moreover, the production phase is characterized by strong 
temperature variations, as experimentally observed, which range 
from 20 °C to 70 °C. From the analysis carried out in the 
previous sections, none of the models considered is able to 
satisfactorily emulate both phases. Indeed, in the production 
phase, the GBDM model appears unsuitable due to the high 
temperature dynamics, while the MLPNN shows a good 
behaviour with respect to this type of operating conditions. 
Conversely, in the deployment phase, which is practically static, 
the GBDM is more effective, taking into account the fact that 
the MLPNN provides inconsistent estimates, since this model 
has not been trained for the low current that characterizes such 
a phase. As a consequence, we adopted a hybrid approach to 
model the discharge curve in a real application context. 
Specifically, the MLPNN model is used for the production phase 
and the GBDM for the deployment one.  

Figure 12 shows the resulting voltage profile obtained with 
this hybrid approach. As can be seen, there is a slight voltage 
increase in the initial part (see the inner rectangle showing the 
curve from 0 to 100 hours) due to the increase in temperature. 
This is followed by the expected voltage plateau and finally by 
the rapid voltage drop. Note that the glitch at t = 72 hours is due 
to the switch between the two models. It represents the initial 
rapid exponential part of the discharge curve typical of the 
GBDM model. 

Taking into account the assessment of the tuned models made 
in the previous sections, the results obtained in this last analysis 
allowed to estimate the battery lifetime, for the final application 
conditions, to be up to 9104 hours. This corresponds to more 
than one year during which the sensor is able to send useful 
monitoring data. In fact, this value meets the requirements of the 
ADMIN-4D project. 

9. CONCLUSIONS AND FUTURE DIRECTIONS OF RESEARCH 

This paper presents an additive manufacturing experiment in 
which battery-powered sensors are embedded in the 
manufactured artifacts. Since the sensors are inaccessible after 
manufacturing, the acquisition of their measurements is totally 
conditioned by the lifetime of the batteries. 

Therefore, we investigated the possibility of modelling the 
discharge curve of the batteries in order to estimate their lifetime, 
taking into account the challenging operating conditions 
imposed by the targeted application. For this purpose, an 
innovative model based on an Artificial Neural Network (ANN), 
specifically a MLPNN, has been proposed and developed 
starting from the discharge curve of the adopted lithium-thionyl 
chloride batteries. The model has been used in conjunction with 
a popular one, namely the GBDM, realizing a hybrid approach 
that proved effective for the battery lifetime estimation. Both 
models have been calibrated using information from the battery 
datasheet and validated using measurements obtained from 
actual sensors. 

The ADMIN-4D project has been completed and some 
prototype artifacts have already been produced and positioned at 
the partners' sites where they transmit sensor data as described 
for the final deployment phase. This scenario paves the way for 
some interesting future activities. The first, related to the follow-
up of the project, is represented by the off-line analyses that will 
provide data to better tune the upcoming artifact production. 
Second, and more focused on the topics of this paper, the 
MLPNN model needs to be further refined to become effective 
also for low currents. In this respect, the data coming from the 
currently installed artifacts will prove particularly useful, since 
they can be used to perform a more extensive and precise training 
and validation process of the model. 
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