Data augmentation for solving industrial recognition tasks with underrepresented defect classes
DOI:
https://doi.org/10.21014/actaimeko.v12i4.1320Keywords:
data augmentation, GAN, recognitionAbstract
This paper discusses neural network-based data augmentation to increase the performance of neural networks in classification of datasets with underrepresented defect classes. The performance of deep neural networks suffers from an inhomogeneous class distribution in recognition tasks. In particular, applications of deep neural networks to solve quality assurance tasks in industrial production suffer from such unbalanced class distributions. In order to train deep learning networks, a large amount of data is needed to avoid overfitting and to give the network a good generalisation ability. Therefore, a large amount of defect class objects is needed. However, when it comes to producing defect classes, obtaining a dataset for training can be costly. To reduce this costs, artificial intelligence in the form of Generative Adversarial Networks (GANs) can be used to generate images without producing real objects of defect classes. This allows a cost-effective solution for any kind of underrepresented classes. However, the focus of this work is on defect classes. In this paper a comparison of GANs for data augmentation with classical data augmentation methods for simulating images of defect classes in an industrial context is presented. The results show the positive effect of both, classical and GAN-based data augmentation. By applying both methods parallel the best results for defect-class recognition tasks of datasets with underrepresented classes can be achieved.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Lennard Wunsch, Katharina Anding, Galina Polte, Kun Liu, Gunther Notni
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).