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INTRODUCTION 

Since AlexNet [1] won the ImageNet challenge [2] in 2012, 
neural networks outperformed classical recognition algorithms in 
many tasks. With the increase of computational power and easy 
excess to large amounts of data, it was simple to apply neural 
networks in recognition tasks. While the depth of networks 
increases, the architectural design results in fewer parameters 
within the network which need to be trained. However, there is 
a need for datasets with a large amount of data to ensure a level 
of generalization. However, this also means that neural networks 
are hard to apply to tasks with small datasets or datasets with 
underrepresented classes and perform rather badly.  

Especially in industrial quality assurance applications the total 
number of objects but also the number of objects within defect 
classes is usually small, which makes the application of neural 
networks difficult. Moreover, creating defect objects on purpose 
is costly and requires a high effort to acquire such data. 

Therefore, manufacturers want to avoid such measures. Figure 1 
displays the quantity distribution of such datasets. While the non-
defect class contains a large number of objects compared to the 
complete dataset, the defect classes only contain a small number 
of objects. 

To address such issues, different approaches are available 
such as data augmentation to increase the datasets size and 
reduce the interclass inequality or Transfer Learning to reduce 
the number of trained parameters. While Transfer Learning [3] 
was introduced to be able to solve similar tasks with the same 
network plus training of the fully connected classification layers, 
data augmentation was used to artificially increase the number of 
objects present by simulating the variation objects in a virtual 
space with simple algorithms. This increase of the total number 
of objects within a dataset reduces the risk of overfitting while 
training a neural network classifier in addition to reducing the 
cost to create a homogeneous dataset [4]. 

ABSTRACT 
This paper discusses neural network-based data augmentation to increase the performance of neural networks in classification of 

datasets with underrepresented defect classes. The performance of deep neural networks suffers from an inhomogeneous class 
distribution in recognition tasks. In particular, applications of deep neural networks to solve quality assurance tasks in industrial 
production suffer from such unbalanced class distributions. In order to train deep learning networks, a large amount of data is needed 
to avoid overfitting and to give the network a good generalisation ability. Therefore, a large amount of defect class objects is needed. 
However, when it comes to producing defect classes, obtaining a dataset for training can be costly. To reduce this costs, artificial 
intelligence in the form of Generative Adversarial Networks (GANs) can be used to generate images without producing real objects of 
defect classes. This allows a cost-effective solution for any kind of underrepresented classes. However, the focus of this work is on defect 
classes. In this paper a comparison of GANs for data augmentation with classical data augmentation methods for simulating images of 
defect classes in an industrial context is presented. The results show the positive effect of both, classical and GAN-based data 
augmentation. By applying both methods parallel the best results for defect-class recognition tasks of datasets with underrepresented 
classes can be achieved. 
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Data augmentation for image processing includes a number 
of different methods which can be applied in an offline or online 
manner. Applying methods offline describes methods which are 
applied to the dataset before training the neural network, while 
applying methods online, these are applied while training the 
network to small batches of data. This approach is mostly used 
in tasks with large datasets to reduce the needed computational 
power.  

Classical methods of data augmentation are for example 
cropping, mirroring, scaling, random erasing [5], rotation or 
translational movement. [6] However, with the increased usage 
of neural networks, GANs [7] were introduced. These network 
architectures learn to simulate images based on a given dataset.  

To evaluate different data augmentation methods, a neural 
network for defect detection is used and trained based on 
augmented data in addition to real data. The evaluation process 
is explained in chapter 4 in detail. 

The following paper is structured as follows: first, a closer 
look at data augmentation methods is given before the datasets 
of industrial recognition tasks used are presented and the 
different experiments are described, the results are shown, and a 
conclusion is given at the end. 

2. AN OVERVIEW ON DATA AUGMENTATION METHODS 

Data augmentation became an important tool for recognition 
tasks since it enables the creation of a more diverse and extended 
dataset. However, it has to be used with care and logically since 
it can also create object variations which are unnatural and 
worsen the performance of trained recognition models. 
Therefore, in addition a certain a priori knowledge of the task at 
hand, a certain knowledge of the different data augmentation 
methods and their mathematical background is needed to 
successfully apply such methods. In [6] and [8] the authors take 
a closer look into different data augmentation methods. 

2.1 Classical methods 

Classical methods use simple mathematical operations to vary 
the image. Cropping a part of the image as well as random erasing 
and scaling strengthens the model which is more robust since it 
learns to classify with a less features. However, it can also cause 
the models performance to worsen if important significant 
features are missing. This can also give an idea about significant 
features and redundant features within the dataset [3]. 

Mirroring or a rotational translation are difficult to apply if 
convolutional neural networks (CNNs) are used for recognition 
tasks. Since CNNs use convolution to process data and extract 

features. Convolution, however, is a translational method and 
therefore adding rotation to the objects on images creates new 
filter within the model which can cause the model performance 
to worsen.  

The insertion of additional defects can also be used for data 
augmentation. By doing so the number of objects within 
underrepresented defect classes can be increased. This is quite 
simple in industrial applications when a main defect is a scratch 
or additional material. 

2.2 Generative Adversarial Networks  

GANs describes a supervised learning algorithm, introduced 
into data augmentation by [7]. The algorithm consists of a pair 
of networks called Generator and Discriminator, which work 
against each other while training. The generator creates an image 
based on a random noise pattern while the Discriminator is given 
either the fake images created by the Generator or a real image 
from the dataset and decides whether the image given is real or 
fake. This is given as feedback to the Generator Therefore, while 
the Generator learns to create more realistic images, the 
Discriminator becomes better in distinguishing between fake and 
real. One disadvantage of GANs is that a large amount of 
computing power and time is required to generate realistic data. 
Training GANs can take a large amount of time before created 
images can be of use. 

In this work, StyleGAN developed by [9] was used for 
simulated data generation. Compared to traditional GANs, 
StyleGAN uses controllable vectors in addition to a randomly 
generated input to manipulate the features of generated images. 
Moreover, a mapping-network consisting of fully connected 
layers is used to create the controllable input vector. A closer 
overview of StyleGAN including a comparison with traditional 
GANs is given in [9].  

3. DATASETS 

In this work two different datasets with industrial background 
are used to compare different data augmentation methods. Both 
are classical defect class recognition tasks from quality assurance 
in industry, where an object needs to be inspected after 
production. Therefore, each dataset contains one non-defect 
class. Dataset one contains macro plastic injection moulded 
objects of LED housings for automotive applications. The defect 
classes can be separated into a class of objects where the nozzle 
was set up too hot, objects with an incorrect granulate 
composition and objects where the holding pressure was set up 
too small. 

Dataset two contains automatic visual inspection of metallic 
surfaces produced by milling. It in Addition to the non-defect 
class, a class of images which show scatter marks and one which 
show longitudinal rills are also part of this dataset.  

Figure 2 displays examples of the different defect classes as 
well as one example of a perfectly produced object. While some 
of the differences between some defect classes and the perfect 
class are easily recognized, such as the scatter marks on the milled 
rings or the incorrect granulate composition at the LED housing, 
others are more difficult to recognize such as the LED Housings 
where the holding pressure was set up to small. 

Both datasets contain images with only single type defects and 
are labelled as such. In both datasets localization and severeness 
of defects are of less importance, since one can conclude the 
source independent from the defect localization or severeness. 
Moreover, correction measures are be introduced solely based on 
the type of defect as well. 

 

Figure 1. Visualization of the data quantity distribution of a dataset with 
underrepresented defect classes. 
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4. EXPERIMENTS 

Different experiments were conducted with different classical 
data augmentation methods and the StyleGAN. To be able to 
compare the results, the fake images were given the same 
network. The VGG19 [10] network was chosen as a base for 
defect detection, due to its simple architecture and strong 
performances. VGG19 is an established network, which contains 
19 feature-processing layers with pooling layers in between. 
Transfer Learning was applied on the defect detection network 
by initializing frozen pretrained weighs based on ImageNet 
Dataset. By convolution, 2D-features are extracted, and two fully 
connected layers are used for fine tuning, before the output layer 
is used for classification. This results in approximately 26 million 
trainable parameters. Overfitting was avoided by introducing 
dropouts and a reduced training period. Training the defect 
detection was stopped after 20 epochs when recognition rates 
started to saturate. 

The datasets were divided into a train set (60 %), a validation 
set (20 %) and a test set (20 %). While the total number of 
objects within the test set was kept constant the training set and 
validation set were adjusted to the total number of objects. For 
validation, k-fold validation was used. As benchmark 
(experiment No. 1) the model was given only real images of the 
datasets to be able to ratify whether data augmentation increases 
or decreases the model’s performance. 

Different subsets of the datasets were created using only 
classical methods of data augmentation (No. 2) and adding to 
original real data, adding only the StyleGAN (No. 3) produced 
data and adding a mixture of both types of data augmentation 
produced data (No. 6). To be able to compare the methods, the 
number of used images was consistent. Additional experiments 
were conducted with twice the number of images using the 
classical methods (No. 4) and StyleGAN (No. 5). In addition, an 
experiment was conducted, again using a mixture of twice as 
many classically created images and GAN-created images, to 
investigate the influence of a large increase in artificially created 
images (No. 7). Each subset is part of one experiment and shall 

give an idea about the influences of different data augmentation 
methods on recognition performances of a neural network.  

Moreover, since GAN training can be conducted using an 
untrained raw set of networks or Transfer Learning [3] can be 
applied, investigations concerning the image quality of the 
created images were done as well. This investigation was done 
before conducting other experiments. For Transfer Learning the 
creation of one class was trained before the information was used 
for training the creation of other classes. This way the training 
process can be accelerated. 

To reduce the GAN training time the image sizes have been 
reduced to 256 x 205 pixel in the milled rings dataset and 512 x 
183 pixel in the LED housing dataset. To be able to train GANs, 
a large amount of computational power is needed. Therefore, the 
training was conducted using a NVIDIA GeForce RTX 2080 Ti 
graphics card. GAN training for dataset one containing LED 
housings stopped at 15 106 images, while GAN training for 
dataset two containing metallic surfaces was stopped at 25 106 
images. Both stops were determined empirically. 

Table 1 shows the data augmentation methods used in the 
corresponding experiments. These numbers will be used to 
allocate the results of each experiment. The total number of 
images used in each experiment for the corresponding dataset is 
also given. The balance between classes was kept constant, so 
that the number of total images was increased but the percentage 
of each class contributing to the dataset is constant. With 
increased use of data augmentation methods, the number of 
images also increases. To ensure a robust training process, for 
each experiment the defect detection model was initialized and 
trained five times to. For comparison mean recognition rate and 
standard deviation were calculated based on all five runs for each 
experiment. 

5. RESULTS 

The Benchmark was set to be able to see whether the used 
data augmentation methods enable a well-known network 
architecture to increase its performance. First examples of GAN-
generated images are shown to get an impression of the quality 
of the images generated with GAN. Then the recognition rate 
and standard deviation for each experiment performed are 
presented to compare the results. An overview of the training 
times needed is given at the end before the conclusion. 

By comparing images created by non-pretrained GANs to 
pretrained GANs and GAN training times in Table 4 (longer 
training times for “Longitudinal Rings” and “Little holding” 

 

Figure 2. Objects of each defect class and the perfect class of both datasets. 

Table 1. Overview of the conducted experiments. 

Experiment 
No. 

Data augmentation methods 
Total number of images 
LED housing/Milled rings 

1 Benchmark 680 / 275 

2 
Real images and classical 

methods 
1224 / 491 

3 
Real images and GAN created 

images 
1224 / 491 

4 
Real images and double the 
number of classical methods 

1768 / 711 

5 
Real images and double the 

number of GAN created images 
1768 / 711 

6 
Real images, classical methods 

and GAN created images 
1768 / 711 

7 
Real images and each double the 

number of images of classical 
method and GAN created images 

2856 / 1145 
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compared to the other classes when using transfer learning), the 
need for transfer learning became clear. Figure 3 shows the 
difference in start of training GANs with and without transfer 
learning. [Image created by using a raw set of GANs (left) and an 
image created using pretrained GANs via transfer learning 
(right)]. While the right image shows a realistic image of milled 
rings, the left displays a noisy pattern as start of training. Thus, 
in the experiments conducted (see Table 1), the first data-
augmented class ("Longitudinal Rings" in the metal data set of 
milled rings and "Little holding" in the LED housing data set) 
was performed without transfer learning and all other classes of 
the two data sets were performed using transfer learning. 

Figure 4 shows two images of the data-augmented milled-
rings dataset. Both were artificially generated by StyleGAN and 
contain longitudinal rills. Comparing the images with the 
example of milled rings with longitudinal rills in Figure 2, both 
seem to be authentic and have similar characteristic.  

Figure 5 shows artificially generated images of LED housings. 
The images can also not be differentiated from images of real 
objects. 

Mean Recognition rate and Standard deviation of the 
evaluation process using VGG 19 are given in Table 2 and 
Table 3 for each dataset respectively. While Table 2 presents the 
results of the experiments conducted on the LED Housing 
dataset, Table 3 shows the results of the experiments conducted 
on the milled rings dataset. When evaluating the results, the 
reader must always consider the increase of images with the 
addition of data augmentation. The reader must keep in mind 
that the benchmark (experiment No. 1) was trained using the 
smallest number of images of all experiments. 

Table 2 shows in general, that each data augmentation 
method increased the model performance and made it also more 
robust. Moreover, it can be seen, that by adding GAN created 
images the model is able to slightly outperform the one where 
classically created images were added. By adding more artificially 
created images, the model’s performance increases even further. 
However, the recognition rates of the experiments with a 
doubled number of artificial images are too close to each other 
to conclude one method superior to the other. Also adding even 

more artificial images does not have a big effect on the 
recognition rate.  

Table 3 displays the results of the experiments conducted on 
the milled rings dataset. The experiments on the milled rings 
dataset also show an increase on the network’s performance with 
the addition of data augmentation. 

Compared to the performance on the LED housing dataset, 
the performance on the milled rings dataset is improving strongly 
by up to 8.36 %. 

However, in this application the classical methods slightly 
outperform the GAN-based approach. Moreover, the best and 
most robust performance was reached when the number of 
objects was increased even further. This can be either a result 
based on simply a larger number of objects or also due to the 
bigger diversity within the datasets classes. 

In total training the GAN for creation of milled rings took 45 
days, 8 hours and 47 minutes while training for the LED housing 
image creation took 68 days, 14 hours and 41 minutes. Table 4 
given an overview of the time used per class. The effect of 
transfer learning can be seen when comparing either the time for 

Table 2. Mean Recognition rates and standard deviation of experiments No. 
1-7 conducted on the LED housing dataset. 

Experiment No. Mean Recognition rate % Standard deviation % 

1 92.79 3.69 

2 93.09 1.43 

3 94.12 1.16 

4 95.10 3.01 

5 95.15 1.69 

6 95.00 1.90 

7 95.29 1.23 

 

Figure 3. Start of training without (left) and with transfer learning (right) of 
the metal data set. 

 

Figure 4. Examples of GAN-generated images of milled rings. 

 
 

Figure 5. Style-GAN generated LED housing images showing top down: hot 
nozzle effects, perfect, little holding effects and effects of incorrect granulate 
composition. 

Table 3. Mean Recognition rates and standard deviation of experiments No. 
1-7 conducted on the Milled rings dataset. 

Experiment No. Mean Recognition rate % Standard deviation % 

1 82.91 5.24 

2 86.55 2.44 

3 86.18 4.74 

4 90.55 1.99 

5 89.09 2.23 

6 89.09 1.82 

7 91.27 1.52 
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the “Longitudinal Rings” class or the “Little holding” class to the 
times of training other classes. 

6. CONCLUSION 

This paper presented a comparison between classical data 
augmentation methods and the new neural network-based data 
augmentation by GAN applied on industrial data. It shows that 
both methods increase the performance of neural network-based 
recognition and also increases the networks robustness. The 
improvement on both different applications shows a trend, 
which can be transferred to other applications in industry as well.  

Moreover, data augmentation not only improves a networks 
performance, but also increases its robustness. Therefore, the 
general use of data augmentation can strongly improve a 
networks performance on industrial applications for quality 
assurance on manufactured objects.  

While in one application the classical methods outperform the 
GAN based approach, the best results were reached when 
combining both approaches for increase the datasets size and 
variety of the classes. This can be explained by the different 
advantages and disadvantages of both methods. Future research 
needs to be done to precisely determine the reason of the better 
performance of the combination of classical and GAN-based 
approaches. Furthermore, to rate the vicinity of reality of 
simulated images, such as GAN generated images, further 
investigations must be done with experiments containing the 
same number of images but a different ration of real and 
simulated images. Moreover, the process of overfitting needs to 
be investigated in future works as well. By monitoring the 
training process of StyleGAN and evaluation at different stages, 
the effect of overfitting on the quality of GAN-based simulated 
data should be further investigated.  
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