Fire SM: new dataset for anomaly detection of fire in video surveillance
DOI:
https://doi.org/10.21014/acta_imeko.v11i1.1210Abstract
Tiny datasets of restricted range operations, as well as flawed assessment criteria, are currently stifling progress in video anomaly detection science. This paper aims at assisting the progress of this research topic, incorporating a wide and diverse new dataset known as Fire SM. Further, additional information can be derived by a precise estimation in early fire detection using an indicator, Average Precision. In addition to the proposed dataset, the investigations under anomaly situations have been supported by results. In this paper different anomaly detection methods that offer efficient way to detect Fire incidences have been compared with two existing popular techniques. The findings were analysed using Average Precision (AP) as a performance measure. It indicates about 78 % accuracy on the proposed dataset, compared to 71 % and 61 % on Foggia dataset, for InceptionNet and FireNet algorithm, respectively. The proposed dataset can be useful in a variety of cases. Findings show that the crucial advantage is its diversity.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).