On the design and characterisation of a microwave microstrip resonator for gas sensing applications
DOI:
https://doi.org/10.21014/acta_imeko.v10i2.1039Abstract
This study focuses on the microwave characterisation of a microstrip resonator aimed for gas sensing applications. The developed one-port microstrip resonator, consisting of three concentric rings with a central disk, is coupled to a 50-Ohm microstrip feedline through a small gap. A humidity sensing layer is deposited on this gap by drop-coating an aqueous solution of Ag@alpha-Fe2O3 nanocomposite. The operation principle of the developed humidity sensor is based on the change of the dielectric properties of the Ag@alpha-Fe2O3 nanocomposite when the relative humidity is varied. However, it should be underlined that, depending on the choice of the sensing material, different target gases of interest can be detected with the proposed structure. The frequency-dependent response of the sensor is obtained using the reflection coefficient measured from 3.5 GHz to 5.6 GHz with relative humidity ranging from 0 %rh to 83 %rh. The variation of the humidity concentration strongly impacts on the two resonances detected in the measured reflection coefficient. In particular, an increase of the humidity level leads to lowering both resonant frequencies, which can be used as sensing parameters for humidity monitoring purpose. An exponential function has been used to accurately model the two resonant frequencies as a function of the humidity.Downloads
Additional Files
Published
2021-06-29
Issue
Section
Research Papers
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).