Application of machine learning techniques and empirical mode decomposition for the classification of analog modulated signals
DOI:
https://doi.org/10.21014/acta_imeko.v9i2.800Abstract
In this article, an automatic Analog Modulation Classifier based on Empirical mode decomposition and Machine learning approaches (AMC-EM) is proposed. The AMC-EM operates without a priori information and can recognise typical analog modulation schemes: amplitude modulation, phase modulation, frequency modulation, and single sideband modulation. The AMC-EM uses Empirical Mode Decomposition (EMD) to evaluate the features of the signal for the successive classification by using Machine Learning (ML). In the design of the AMC-EM, the selection of the specific ML technique is performed by comparing, with numerical tests, the performance of the (i) Support Vector Machine (SVM), (ii) k-nearest neighbor classifier, and (iii) adaptive boosting, since they are commonly used in the field of signal classification. The tests have highlighted that the SVM, specifically the quadratic SVM, permits the best possible performance concerning classification accuracy, by considering different noise intensities superimposed on the signal. To assess the advantages of the proposal, a comparison with other classifiers available in the literature has been undertaken through numerical tests. Finally, the AMC-EM is experimentally evaluated, and the experimental results agree with those of the simulation.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).