Laser cleaning of Cu-based artefacts: laser/corrosion products interaction
DOI:
https://doi.org/10.21014/acta_imeko.v7i3.610Abstract
This study aims to develop a low invasive and selective laser cleaning procedure for the removal of reactive corrosion products on Cu-based artefacts without damage the substrate. In a preliminary step, laser cleaning was performed on two typologies of artificially corroded copper reference samples. The effect of the variation of laser parameters as pulse duration and output power, was thus evaluated on an oxide layer, simulating a protective patina, and a hydroxychloride layer, simulating a reactive corrosion products layer to be removed. The optimized cleaning procedure was validated on an archaeological artefact, a bronze coin. Morphological, microchemical and microstructural characterizations were performed by means of optical microscopy, confocal microscopy, field emission scanning electron microscopy, X-Ray diffraction and Raman spectroscopy, before and after laser cleaning. The experimental findings show that laser cleaning, in optimized conditions, can reduce the thickness of the hydroxychloride layers slightly affecting the oxide layers. The difference in the interaction with laser radiation of these two layers seems to be mainly related to the difference in grain size and porosity. Notwithstanding these encouraging results, in order to define the real feasibility of the laser cleaning procedure, a further validation on real artefacts is mandatory due to the variation in thickness and composition of the corrosion products formed during long-lasting uncontrolled degradation processes.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).