Progress on vacuum-to-air mass calibration system using magnetic suspension to disseminate the Planck-constant realized kilogram
DOI:
https://doi.org/10.21014/acta_imeko.v6i2.406Abstract
The kilogram is the unit of mass in the International System of units (SI) and has been defined as the mass of the International Prototype Kilogram (IPK) since 1889. In the future, a new definition of the kilogram will be realized by fixing the value of the Planck constant. The new definition of the unit of mass will occur in a vacuum environment by necessity, so the National Institute of Standards and Technology (NIST) is developing a mass calibration system in which a kilogram artefact in air can be directly compared with a kilogram realized in a vacuum environment. This apparatus uses magnetic suspension to couple the kilogram in air to a high accuracy mass balance in vacuum.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).