Molten metal’s reaction force measurement for pressure estimation and control system construction in press casting
DOI:
https://doi.org/10.21014/acta_imeko.v6i2.401Abstract
This paper presents a measurement system for molten metal’s reaction force and estimation of liquid pressure during pressing to control the iron product quality. We have developed a new type of casting process. In the process, molten metal is quickly filled into casting molds by high-speed pressing. Casting defects such as physical metal penetration is often caused by excess pressure. Hence, we have constructed a pressure control system using a mathematical model-based off-line simulation to derive the ideal feedforward control input of pressing. However, it is difficult to accurately control the pressure in cases of varying conditions such as liquid volume and temperature changes. Also, pressure measurements by using contact-type sensors directly is impossible for molten metal, because of the high temperature of the liquid, over 1400 °C. So, we have proposed a new pressure estimation method with force measurement data processing. Here, the exact reaction force from the molten metal must be accurately observed by a force sensor set between the upper mold and its elevating device. The viscosity coefficient can also be calculated on a real-time basis. The proposed force measurement system will realize an improved casting quality due to the effective feed-back control system.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).