Realization of an SI traceable small force of 10 to 100 micro-Newton using an electrostatic measuring system
DOI:
https://doi.org/10.21014/acta_imeko.v6i2.336Abstract
A small force of (10–100) micro-Newton traceable to the International System of Units (SI) has been realized using an electrostatic measuring system at the National Institute of Metrology, China. The key component of the measuring system is a pair of coaxial cylindrical electrodes. The inner electrode is suspended with the support of a self-balanced flexure hinge, while the outer electrode is attached to a piezoelectric moving stage. The stiffness of the self-balanced flexure hinge was also designed so as to be both sufficiently stable and sensitive to the small force applied to the inner electrode. Two sets of cameras were used to capture the shape of the electrodes and to obtain a better coaxial arrangement of the inner and outer electrodes. With the help of a capacitance bridge and a piezoelectric moving stage, the relative standard uncertainty of the capacitance gradient does not exceed 0.04 %. Associated with a laser interferometer and a DC voltage power source, the feedback system that controls the position of the inner electrode is responsible for the generation of a force of 10–100 micro-Newton. The standard uncertainty associated with the force of 100 micro-Newton does not exceed 0.1 %.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).