Single image geometry inspection using inverse endoscopic fringe projection
DOI:
https://doi.org/10.21014/acta_imeko.v4i2.186Abstract
Fringe projection is an important technology for the measurement of free form elements in several application fields. It can be applied for geometry elements smaller than one millimeter. In combination with deviation analysis algorithms, errors in fabrication lines can be found promptly to minimize rejections. However, some fields cannot be covered by the classical fringe projection approach. Due to shadowing, filigree form elements on narrow or internal carrier geometries cannot be captured. To overcome this limitation, a fiberscopic micro fringe projection sensor was developed. The new device is capable of resolutions of less than 15 µm with uncertainties of about 35 µm in a workspace of 3 × 3 × 3 mm³.Using standard phase measurement techniques, such as Gray-code and cos²-patterns, measurement times of over a second are too high for in-situ operation. The following work will introduce a new approach of applying a new one image measuring method to the fiberscopic system, based on inverse fringe projection. The fiberscopic fringe projection system employs a laser light source in combination with a digital micro-mirror device (DMD) to generate fringe patterns. Fiber optical image bundles (FOIB) are used in combination with gradient-index lenses to project these patterns on the specimen. This advanced optical system creates high demands on the pattern generation algorithms to generate exact inverse patterns for arbitrary CAD-modelled geometries. Approaches of the optical simulations in the context of the complex beam path, together the drawbacks of the limited resolutions of the FOIBs shall be discussed. Early results of inverse pattern simulations using a ray tracing approach of a pinhole system model are presented.
Downloads
Published
2015-06-29
Issue
Section
Research Papers
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).