Thermal modeling and characterization for designing reliable power converters for LHC power supplies
DOI:
https://doi.org/10.21014/acta_imeko.v3i4.147Abstract
Power supplies for LHC experiments (ATLAS) require DC-DC power converters able to work in very hostile environments. The APOLLO collaboration, funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN), aims to study dedicated topologies and to design, build and test demonstrators, developing the needed technology for the industrialization phase.
Besides the presence of radiation and magnetic fields, thermal specifications are particularly stringent in the working environment. In order to have the wanted features in terms of reliability and availability during the experimental activity, these power electronics circuits must be cooled by specifically designed water heat sinks, and an accurate thermal design is mandatory in order to guarantee safe and reliable operation. Moreover, an optimized thermal design allows to have a maintenance strategy in compliance with the requirements of the experiments.
In this paper thermal characterization is used for tuning a coupled thermo-fluid-dynamic 3D numerical model, for both the water heat sink and the whole system. Based on this model an optimized water heat sink was designed and fabricated. Thermal characterization of the power converter demonstrator in different operating conditions shows good agreement with simulation results.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).