Comparison of three types of dry electrodes for electroencephalography
DOI:
https://doi.org/10.21014/acta_imeko.v3i3.94Abstract
A potential new area of routine application for electroencephalography (EEG) is the brain-computer interface, which might enable disabled people to interact with their environment, based on measured brain signals. However, conventional electroencephalography is not suitable here due to limitations arising from complicated, time-consuming and error-prone preparation. Recently, several approaches for dry electrodes have been proposed. Our aim is the comparison and assessment of three types of dry electrodes and standard wet silver/silver-chloride electrodes for EEG signal acquisition. We developed novel EEG electrodes with titanium and polyurethane as base materials, which were coated with nanometer sized titanium-nitride films. Furthermore gold multi-pin electrodes were arranged on printed circuit boards. The results of the comparison of these electrodes with conventional wet silver/silver-chloride electrodes in terms of electrode impedances are presented, as well as open circuit potentials and biosignal measurements. Impedances were significantly higher for all dry electrode types compared to wet electrodes, but still within the measurement range of today’s standard biosignal amplifiers. It was found that the novel dry titanium and polyurethane based electrodes show biosignal quality equivalent to conventional electrodes. In conclusion, the novel dry electrodes seem to be suitable for application in brain-machine interfaces.Downloads
Published
2014-09-23
Issue
Section
Research Papers
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).