Algorithm for a high precision contactless measurement system
DOI:
https://doi.org/10.21014/acta_imeko.v2i2.82Abstract
This paper presents a Monte Carlo simulation of the self-calibration method for the multi laser tracker system (MLTS) which can track a retroreflector mounted on a kinematical system (e.g. positioning stage, robot manipulator etc.). Four laser trackers build up the MLTS. In the first part of the study the required algorithms enabling the MLTS to measure the position of the retroreflector are presented. The algorithms include the localization of the retroreflector, the communication between the laser trackers and the tracking controller as well as the calculation of the Tool Centre Point (TCP) position. In the second part of this study a deeper analysis of the self-calibration algorithm is carried out. A Monte Carlo simulation shows that the quality of the parameter estimation highly depends on the optimal arrangement of the MTLS.Downloads
Published
2014-01-15
Issue
Section
Research Papers
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).