Evaluating chemometric strategies and machine learning approaches for a miniaturized near-infrared spectrometer in plastic waste classification
DOI:
https://doi.org/10.21014/actaimeko.v12i2.1531Keywords:
Plastic waste sorting, Near-Infrared Spectroscopy (NIRS), Circular economy, Chemometrics, Machine LearningAbstract
Optimizing the sorting of plastic waste plays a crucial role in improving the recycling process. In this contribution, we report on a comparative study of multiple machine learning and chemometric approaches to categorize a data set derived from the analysis of plastic waste performed with a handheld spectrometer working in the Near-Infrared (NIR) spectral range. Conducting a cost-effective NIR study requires identifying appropriate techniques to improve commodity identification and categorization. Chemometric techniques, such as Principal Component Analysis (PCA) and Partial Least Squares - Discriminant Analysis (PLS - DA), and machine learning techniques such as Support- Vector Machines (SVM), fine tree, bagged tree, and ensemble learning were compared. Various pre-treatments were tested on the collected NIR spectra. In particular, Standard Normal Variate (SNV) and Savitzky-Golay derivatives as signal pre-processing tools were compared with feature selection techniques such as multiple Gaussian Curve Fit based on Radial Basis Functions (RBF). Furthermore, results were combined into a single predictor by using a likelihood-based aggregation formula. Predictive performances of the tested models were compared in terms of classification parameters such as Non-Error Rate (NER) and Sensitivity (Sn) with the analysis of the confusion matrices, giving a broad overview and a rational means for the selection of the approach in the analysis of NIR data for plastic waste sorting.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Claudio Marchesi, Monika Rani, Stefania Federici, Matteo Lancini, Laura Eleonora Depero
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).