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Abstract − When extracting lesions in medical images using 

deep learning, the extraction accuracy will be higher if the 

image quality is good. The purpose of this study is to 

investigate and comprehend the relationship between the 

spatial-resolution property of X-ray images and the accuracy of 

lesion extraction by deep learning, and to examine the 

possibility of dose reduction from the obtained results. The 

simulated masses arranged on different areas in dual energy 

subtraction (DES) chest radiographs acquired by various doses 

were used for the investigation. Task-based transfer functions 

(TTFs) as a spatial-resolution property for the DES chest 

radiography were calculated. The mass areas were also 

extracted by U-net, and Dice coefficients were obtained as the 

extraction accuracy. In results, regardless of mass locations, the 

TTFs of the reference dose images and the 75% dose images 

showed high frequency responses, and the Dice coefficients 

were also high. The TTFs and the Dice coefficients were 

obviously lower in the images of when the masses were located 

in the right supraclavicular region at 50% dose compared with 

the other conditions. The results of this study suggested that the 

spatial-resolution property was strongly related to the accuracy 

of mass region extracted by deep learning in DES chest 

radiography. In conclusion, the dose reduction of about 25% 

compared with the conventional dose should be feasible. 
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1.  INTRODUCTION 

When the lesion overlaps the bony region in a chest 

radiograph, the recognition of the lesion will be difficult [1]. 

As a countermeasure to this problem, an image processing 

method has been used to subtract the two images obtained 

by using 2-shots with different tube voltages during one 

examination. Using this technique, it is possible to obtain an 

image of soft tissue only (hereafter referred to as soft tissue 

image) in which the bone shadow is removed by subtracting 

two types of images with different imaging conditions [1-3]. 

However, on the 2-shots imaging, acquisition of good 

subtraction images is sometimes difficult due to poor breath-

holding and heartbeat effects caused by extended imaging 

time. In recent years, there has been a shift from computed 

radiography (CR) systems to flat panel detector (FPD) 

imaging [4], and dual energy subtraction (DES) techniques 

with 1-shot imaging using FPDs stacked with two types of 

X-ray detectors have become popular. 1-shot imaging has 

several advantages, such as lower radiation exposure, 

compared to 2-shots imaging.  

The recognition of the lesion will be commonly easy by 

using DES, because bone shadows are removed in soft 

tissue images. However, the image quality of chest 

radiograph differs substantially from region to region due to 

differences in detector dose and scattered radiation dose, and 

thus differences in lesion detectability are expected to occur 

depending on the location of the lesion. In particular, the 

upper lobe, which is a predilection site of adenocarcinoma 

[5], is considered to be significantly affected by scattered 

radiations generated from the clavicle and scapula. 

Furthermore, the spatial-resolution property of the imaging 

system is very important in detecting masses [6]. In general, 

various image processing has been applied to chest 

radiograph to improve image quality. Typical examples 

include multi-frequency processing and dynamic range 

compression processing. The effects of these processes 

show nonlinear behavior that is influenced by the image 

quality of different parts of the image. The image quality of 

soft tissue images is also expected to exhibit nonlinear 

behavior, and therefore, task-based evaluation is necessary 

to determine the spatial-resolution property of soft tissue 

images. 

In addition, as the volume of medical image data increases, 

computer-aided diagnosis (CAD) systems are being 

introduced into clinical workflows, and in recent years, deep 

learning technology has been incorporated into these 

systems. Image segmentation is the process of dividing the 

image into regions for each target in the image, or cutting 

out the target region and distinguishing it from other regions. 

The target regions in medical images are usually organs and 

lesions, and not only the features of the objects but also the 

information of overall location must be identified in the 

original input image in the segmentation process. In general, 

the higher quality of the input image is, the higher extraction 

accuracy is. U-net [7] is a typical deep convolutional neural 

network for image segmentation. In this study, we focused 

on the extraction of lung masses using U-net in soft tissue 

images. We also investigated the relationship between the 



evaluation index of the mass region, which indicated the 

extraction accuracy, and the spatial-resolution property of 

the soft tissue images. Although there are several reports on 

lesion detection using visual evaluation in 1-shot DES 

systems with CR systems [8-12], there are no reports on 

relationship between the spatial-resolution property of the 

image and the accuracy of lesion extraction using deep 

learning in FPD systems. The purpose of this study is to 

investigate and comprehend the spatial-resolution property 

of soft tissue images under different doses and locations of 

masses, and to examine the possibility of dose reduction in 

DES chest radiography by the investigated relationship. 

2.  MATERIALS AND METHODS 

Acrylic cylinders (20 mm in diameter and 3 mm in 

thickness) simulating a mass were placed in four regions 

(right supraclavicular, left middle lung, right lower lung, and 

mediastinum) on the chest phantom (Fig. 1), and after 

imaging at different doses (115 kV, 1.6 mAs: reference dose, 

1.25 mAs: 75% dose, 0.8 mAs: 50% dose), we acquired soft 

tissue images processed by DES.  

The boundary lines of masses in the soft tissue images 

were manually determined and used to calculate the TTFs  

[13] as the spatial-resolution property. The process of 

calculating TTF is shown in Fig. 2. The edge spread 

function (ESF) of a cylinder was obtained by averaging the 

profiles across the edges of the cylinder in the radial 

direction from the center. Next, the TTF was calculated by 

Fourier transform from the line spread function (LSF), 

which is the derivative of the LSF. Then, regions of interests 

(ROIs) including the masses were cropped and resized into 

128×128 matrices, and converted to png format. U-net was 

used for extraction of the mass area from the cropped image. 

The operating environment of U-net for this study was the 

following: Windows10, Python3.7, TensorFlow1.13.1, 

keras2.3.1, Core i7 Intel CPU, 16GByte memory, GeForce 

GTX 1650 GPU. ReLu and sigmoid functions were used as 

activation functions. Cross entropy was used as the loss 

function, and Adam was used as the learning optimization 

algorithm. In this study, we used the reference dose images 

as training data and respective dose reduction images as 

evaluation data. The teaching images were created by 

binarization of the mass and background regions. The Dice 

coefficient [14] was obtained to show the degree of 

similarity between the output images and the teaching 

images, and was used to evaluate the accuracy of 

segmentation for the mass region by U-net. Below is the 

definitional identity of the Dice coefficient.  

 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

 

Here, A is the mass region in the training images and B is 

the mass region in the segmentation images. Finally, we 

clarified the relationship between the evaluation index of the 

mass region and the spatial-resolution property of the soft 

tissue images from the trend of the values of TTFs and Dice 

coefficients. 
 

 

3.  RESULTS AND DISCUSSION 

Fig. 3 shows the TTFs for each of the conditions. In the 

apex of the lung, the contrast was low compared with other 

regions due to scattered radiation from the clavicle and 

scapula. There was no difference in TTFs between the 

reference dose images and the 75% dose images, and the 

TTF of the 50% dose images was lowest. On the other hand, 

the difference in TTFs among the three doses was small in 

the middle and lower lung regions, because the effect of 

scattered radiation was small and the contrast was high. In 

the mediastinal region, we supposed the TTFs behaved 

similarly to the apex region due to the low contrast caused 

by scattered radiation generated from the heart and sternum. 

However, the TTFs was not as low as in the apex region. 

The TTFs of the apex region were comprehensively lower 

than the other regions. The Dice coefficients for the 75% 

dose images were generally high regardless of the location 

of the mass or the radiation dose, and their behaviors 

corresponded with those of the TTFs. In contrast, the Dice  
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Fig.1 Placement of simulated masses on chest 

phantom 

Fig.2   TTF calculation process 



 

coefficient for the right supraclavicular region under the 

50% dose condition was low. It was also consistent with the 

trend of the TTF (Table 1). 

In the 50% dose condition with the simulated mass 

located on the right clavicle, the TTF was significantly 

lower and the Dice coefficient was also lower than in the 

other conditions. Fig. 4 shows the region of the mass 

extracted by U-net under the 75% and 50% dose conditions. 

Compared with the 75% dose condition, a slightly larger 

region against the teaching data was extracted in the 50% 

dose condition. This phenomenon could happen if the TTF 

was reduced caused by scattered radiation from the clavicle 

and scapula, and the increasing of image noise caused by the 

low dose delivered to the detectors prevented the correct 

extraction of the mass area. In the mediastinum region, the 

influence of scattered radiation and detector dose was 

considered to be large as in the right supraclavicular region. 

However, the TTF values were not so different from those in 

the left middle lung field and right lower lung field, and the 

Dice coefficients were also similar. This may be due to the 

fact that the area around the mass in the mediastinum region 

has fewer pulmonary blood vessels and a simpler structure 

against the other regions. Thus, we considered that the mass 

area could be extracted with high accuracy despite the large 

influence of image noise. 

The results of this study showed that the spatial-

resolution properties of soft tissue images were strongly 

related to the evaluation indexes of extracted mass area by 

deep learning in reference dose images and 75% dose 

images. In addition, the spatial-resolution property 

deteriorated and the evaluation index of the mass region 

showed low values when the mass originated in the right 

supraclavicular region under the 50% dose condition. For 

the above reason, the possibility of dose reduction of about 

25% in 1-shot DES chest radiography was suggested. 

Furthermore, if we could select more suitable parameters of 

an image processing improving spatial resolution such as 

multi-frequency processing, further dose reduction would be 

feasible. 

The first limitation of this study is about the shape of the 

simulated mass. The simulated mass used in this study was a 

Fig.4 Binary images of masses located on the 

right supraclavicular region 
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Fig.3     TTFs for each of the conditions 
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Table.1   Dice coefficients for each of the conditions 

mAs 
right 

supraclavicular 

left  

middle  lung 

right  

lower  lung 
mediastinum 

1.25 0.960 0.960 0.959 0.971 

0.8 0.937 0.969 0.963 0.967 

 



simple cylindrical structure only. The results might be 

different if we used masses with more complex structures 

such as spicules. As the second limitation, the masses were 

placed in specific four locations only. But if the locations of 

the lesions were different from those, the results could be 

also different because the contrast of the masses would 

change by overlapping with soft tissues. In addition, this 

study was conducted using the phantom only and did not 

take into account the effect of heartbeat, which was a very 

important issue in real examination. We plan to resolve 

these issues and promote research that is more relevant to 

actual clinical examination in near future. 

 

4.  CONCLUSIONS 

We clarified the relationship between the spatial-resolution 

property in the mass region of DES chest radiograph and the 

extraction accuracy of the mass region using deep learning. 

The TTF was used as an index of spatial- resolution 

property, and the Dice coefficient was also used as an 

evaluation index for the extracted mass area. They were 

calculated under different mass occurrence sites and 

different imaging dose conditions. As a result, the TTFs 

obtained from the reference dose images and the 75% dose 

images showed similar frequency characteristics with high 

Dice coefficients regardless of the locations of the masses. 

In contrast, when the mass was located in the right 

supraclavicular region of the 50% dose images, the TTF and 

the Dice coefficient were obviously lower compared with 

other conditions. In conclusion, the TTF was strongly 

related to the extraction accuracy for mass region by deep 

learning in DES chest radiograph, and 25% dose reduction 

compared with the conventional dose should be feasible. 
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