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1. INTRODUCTION 

In these modern times, it is commonly accepted by the 
scientific community that the term thermal comfort refers to a 
very subjective concept, that differs from one individual to 
another [1]. In fact, thermal comfort is affected by several factors 
that include personal, psychological, physical and environmental 
diversities and therefore, the personalization of thermal comfort 
measurement is increasingly required to provide more tailored 
and customized indoor environments, that start with the single 
individual and end with a comfortable and satisfactory 
environment [2], [3], [4].  

Physiological, psychological and personal parameters are 
progressively included in the measurement setup of thermal 
comfort, to encourage a more customized environment carefully 
tailored to the distinct preferences of the occupants that live in 
it. 

To put together all these specific parameters, personalized 
thermal comfort measurement typically requires an extensive 
range of sensing devices that make up a sensors network. Since 
each sensor is properly characterized by measurement 
uncertainty, it is significant to include in the measurement 
process how this uncertainty, associated with each parameter, 
affects the final measurement of thermal comfort. 

 This aspect is even more justified since, in all research fields, 
it is routinely accepted by the scientific community that the result 
of a measurement process promptly loses its meaning if an 
uncertainty value is not associated with it [5]. The traditional 
concept of measurement uncertainty must therefore be 
associated and applied to modern techniques, as in the case of 
artificial intelligence (AI) algorithms, which are finding more and 
more space in the measurement process. In support of this claim, 
literature reports that when small variations are applied to data, 
and variations are represented by the measurement uncertainty 

ABSTRACT 
This paper presents an approach to assess the measurement uncertainty of human thermal comfort by using an innovative method that 
comprises a heterogeneous set of data, made by physiological and environmental quantities, and artificial intelligence algorithms, using 
Monte Carlo method (MCM). The dataset is made up of heart rate variability (HRV) features, air temperature, air velocity and relative 
humidity. Firstly, MCM is applied to compute the measurement uncertainty of the HRV features: results have shown that among 13 
participants, there are uncertainty values in the measurement of HRV features that ranges from ±0.01% to ±0.7 %, suggesting that the 
uncertainty can be generalized among different subjects. Secondly, MCM is applied by perturbing the input parameters of random forest 
(RF) and convolutional neural network (CNN) algorithm, trained to measure human thermal comfort. Results show that environmental 
quantities produce different uncertainty on the thermal comfort: RF has the highest uncertainty due to the air temperature (14 %), while 
CNN has the highest uncertainty when relative humidity is perturbed (10.5 %). A sensitivity analysis also shows that air velocity is the 
parameter that causes a higher deviation of thermal comfort.  

mailto:s.casaccia@staff.univpm.it


 

ACTA IMEKO | www.imeko.org December 2021 | Volume 10 | Number 4 | 222 

associated with the data collected, AI provides completely 
misleading results [6].  

The reason behind the use of AI for personalized thermal 
comfort measurement is that the measured output is dependent 
on several parameters, i.e., physiological and environmental 
parameters, that compose the measurement system. Currently, 
the thermal sensation related to thermal comfort, is expressed 
using psychological scales, the most prominent of which is the 
ASHRAE 7-points scale, which is used in many comfort studies 
[7]. This scale is used to rate the thermal sensation vote (TSV), 
with 7 different verbal terms which are: “cold”, “cool”, “slightly 
cool”, “neutral”, “slightly warm”, “warm”, and “hot”. Each term 
is associated with a categorical number in the range from -3 
(“cold”) to +3 (“hot”). 

The application of AI in the measurement of human thermal 
comfort in the built environment, is becoming preferable 
because the adopted dataset is composed of two categories of 
parameters, which comprise the environmental and physiological 
parameters. A third category is also added to this dataset, made 
up of subjective parameters, expressed by the TSV. The union of 
these quantities generates a complex and heterogeneous dataset, 
making necessary the employment of AI, which comprises 
models comparable to a black box [8]. There are strong non-
linear relationships among the parameters included in this 
heterogeneous dataset, which suggests that this relationship 
should be explored with more complex and high-level 
algorithms, included in the AI field [9], [10] . 

AI measures its performance in terms of accuracy, which is 
expressed through different metrics, depending on the type of 
algorithm adopted, and the type of data being measured; for 
example, when the measured quantity is binary, or is made by 
discrete values, or class, performances are measured using 
accuracy, recall or precision; in case of AI used for measuring 
continuous quantities, the most used metrics are the mean 
absolute error (MAE), mean absolute percentage error (MAPE), 
and mean squared error (MSE). Of course, the accuracy of AI-
based models, is strictly linked to the selected algorithm as well 
as the quality of the dataset, which is deeply connected to the 
uncertainty of the measured data [8] [11].  

The method for the estimation of the uncertainty is described 
in the Guide to the expression of uncertainty in measurement 
(GUM) [12], which is based on the law of propagation of 
uncertainties (LPU). Given the strong non-linearity of the 
relationship that exists between the input quantities and the 
output quantities of AI algorithms, the evaluation of the 
uncertainty associated with the output quantity is hard to assess 
if the LPU should be used.  

When it comes to non-linear relationship, the GUM has 
proposed in its supplement [13], the evaluation of the uncertainty 
by using the Monte Carlo method (MCM), which allows 
assessing the uncertainty even if the relationship among 
quantities is not linear, and the analytical equation between 
quantities is not known, but it can be assumed as a black box, as 
happens in the context of AI models. The MCM represents a 
more practical alternative to the conventional LPU method, 
when it is not possible to effectively verify the hypothesis 
assumed by the LPU [11]. For this reason, this work studies the 
impact of the measurement uncertainty of a sensors network to 
measure thermal comfort, using AI models.  

To quantify and access the factors that affect the outcome of 
a measurement process through MCM, there are two 
methodologies that can provide this information: sensitivity 
analysis and a measurement uncertainty analysis [14], [15], [16], 

[17]. Both of them are now applied to AI models, the first one 
to analyze how much each uncertainty weights on the 
measurement of the model’s outcome and the second to identify 
and quantify what are the main sources of uncertainties in the 
measurement [18].  

As mentioned before, thermal comfort personalization is 
based on the measurement of a heterogeneous set of data, (i.e., 
environmental, physiological and personal parameters).  

Regarding physiological quantities, the object of this study is 
the addition of Heart Rate Variability (HRV) into the process for 
the measurement of thermal comfort: in fact, literature has 
repeatedly found the relationship that exists between some 
measures (or indices) derived from HRV and the thermal 
discomfort of the participant [19]–[22]. In particular, HRV is 
used to extract additional features, such as a specific quantity 
named LF/HF, which has a relationship with the thermal 
comfort of the user [9], [23]. More in detail LF/HF is the ratio 
between two HRV-derived parameters which are the low 
frequency components (LF) and the high frequency components 
(HF). Literature has found that these two quantities represent the 
activity of the autonomic nervous system, responsible for the 
management of thermoregulation, and therefore are used to 
evaluate human thermal comfort. According to a previous study 
[23], [9], [24], physiological features of HRV and environmental 
quantities can be used in combination with AI models, to predict 
the TSV of user exposed to discomfort environmental 
conditions. Results have shown that the TSV can be measured 
using two AI algorithms, which are the Random Forest (RF), that 
belongs to the ML class and Convolutional Neural Networks 
(CNN), which are part of DL branch, with a MAPE of 20 % and 
21 % respectively [23]. The further step is therefore to know how 
much the measurement uncertainty of each parameter involved 
in the measurement of thermal comfort, impacts the final 
measurement of TSV.  

To this aim, the paper is structured as follows:  
a) First of all, MCM is applied to the raw HRV signals 

coming from different participants, to see how the 
uncertainty in the measurement of HRV impacts 
the computation of the HRV features, since they 
are fed into AI algorithms, to extract the TSV. The 
standard uncertainty, associated to the 
measurement of HRV, chosen for this analysis is 
± 4 ms, computed from a previous study in which 
the smartwatch was compared to a reference 
method while participants were sitting at rest [25]. 
This preliminary analysis can be useful to establish 
if the measurement uncertainty of the smartwatch, 
used to assess HRV and derive its features, has the 
same impact on each participant’s data, by having 
similar measuring uncertainty for each.  

b) Secondly, MCM is applied to both physiological 
and environmental parameters used as input to the 
AI algorithms (RF and CNN), to evaluate how the 
measurement uncertainty propagates to the 
output, in black box methodology such as AI 
algorithms. The uncertainty used for the 
environmental quantities is the standard 
uncertainty provided from the datasheet of each 
device, while HRV is perturbed with different 
values of uncertainty that range from ± 4 ms to 
± 100 ms. This range of values is chosen because 
literature has highlighted that, depending on the 
activity level performed by the participants, the 



 

ACTA IMEKO | www.imeko.org December 2021 | Volume 10 | Number 4 | 223 

uncertainty associated with the measurement of 
the HRV in resting condition is ± 4 ms, while is 
greater than or equal to 100 ms when the user is 
performing a motion test [25], [26]. The research 
described in [25] and [26] were necessary since 
commercial smartwatches are not provided with 
precise datasheets that define the measurement 
uncertainties of the measured quantities. This is 
one of the problems being encountered in 
literature when it comes to working with low-cost 
sensors and often sensors that are not designed for 
research purposes. 
Finally, the results are used to perform a sensibility 
analysis related to ± 4 ms of uncertainty, to 
examine the contribution of the uncertainties 
associated to the TSV measurement, in relation to 
the uncertainties of the input parameters. 

The paper is organized as follows: Section 2 firstly describes 
how MCM is applied to compute the uncertainty in the 
measurement of HRV features, using a wearable smartwatch; 
secondly, it is explained the process to compute the 
measurement uncertainty of human thermal comfort, using a 
heterogeneous dataset and trained AI algorithms. Section 3 
provides the results associated with the two methodologies 
described in Section 2, and the result of the sensitivity analysis. 
Section 4 presents the discussion of results and Section 5 
provides the conclusion and the innovative aspect of this work.  

2. MATERIALS AND METHODS 

In this paper, a procedure to evaluate the impact of the 
uncertainty of the input data on the thermal sensation 
measurement output is applied. The aim is to introduce and 
combine a traditional technique that is the MCM for the 
estimation of the measurement uncertainty, with AI models.  

The methodology described in Figure 1 is adopted: the first 
assumption is that each data coming from a measurement 
process is characterized by two quantities which are the data itself 
and the associated uncertainty. Collected data from sensors 
network are merged together to build the heterogeneous dataset, 
that comprises the set of data and the associated uncertainties; 
therefore, when AI is applied in the measurement process, the 
model takes as input also the uncertainty of the collected data. 
Therefore, it is expected that the results of the AI model derive 
from two main aspects: the first one is the intrinsic structure of 

the algorithm, while the second one is uncertainty associated with 
the input data [6]. The evaluation of the impact of the uncertainty 
associated with the input data in the measurement output, when 
AI is applied, is a paramount result. There is one intermediate 
aspect that should be considered, which is the impact of the 
uncertainty of the AI models, that will be combined with the 
uncertainty of the measurement instrument. The last part of 
Figure 1 deals with two types of analysis which are the sensitivity 
analysis (SA) and the uncertainty analysis, performed by MCM. 

The procedure of the MCM consists in using data, acquired 
through real experiments, and perturbing them by assigning 
different measurement uncertainties or perturbations. Each 
input parameter is modified, by adjusting it with a different 
perturbation, one at a time, while the other input variables are 
kept unchanged. Based on the obtained results, the effect of 
different measurement uncertainties on the prediction of the 
TSV is observed through the simulation of perturbed data.  

 The described methodology summarizes the steps to evaluate 
the measurement uncertainty of different parameters, used as 
input variables (or predictors) in AI algorithms, applied for the 
measurement of personalized thermal comfort, expressed 
through the TSV. The GUM supplement provides the step 
necessary to perform the MCM. From a general point of view, 
MCM provides a general approach to numerically approximate 
the cumulative density function (cdf) of the output of a certain quantity 

𝑦 = 𝑓(𝑥). The main concept behind MCM is that every sample 

of the input quantity 𝑥𝑖 , chosen from a predetermined 
distribution can be used. In this way, by taking a random sample 

of each input 𝑥𝑖 , from its related probability distribution function 

(pdf), it is possible to estimate a possible result of the output 𝑦 
and the associated uncertainty. 

To explain how MCM is adapted in the context of this 
research, the following steps were applied:  

1) The number of trials M of Monte Carlo trials is set to 
200,000. M is the number of output quantity values that 
need to be selected; in this study, it is chosen a priori. 
Usually, a number of trials equal to 106 are considered, 
which is the number of trials that should provide a 
coverage interval of 95 %, as reported in the GUM 
supplement [13]. Since it is commonly accepted that, 
the higher the number of trials, the higher is expected 
the convergence of the results, authors have set the 
number of Monte Carlo trials (M) to 200.000, as 
reported from the literature [14]; 

2) M vectors 𝑥𝑖 , 𝑖 = 1, …, M, were generated, by selecting 
randomly from the probability density function (PDF) 

of each input quantity [𝑥HRV, 𝑥𝑡𝑎 , 𝑥𝑅𝐻 , 𝑥𝑣𝑎  ] in order 

to realize a set of possible input that can be associated 
to the input quantity. The random sample is obtained 
from a gaussian distribution, with uncertainties 
described in Table 1. 

3) For each vector generated in step 2, the corresponding 

output 𝑦 (or TSV in this case) is computed, yielding to 
M vector output quantity values; 

4.1)  Point 3 is applied to estimate the uncertainty associated 
with the measurement of the HRV features, described 
in Section 2.1; 

4.2) In addition, point 3 is applied, perturbing the features 
used as input in the AI models, described in Section 2.2; 

5) The representation G of the distribution function for Y 
is computed, starting from the set of M output of Y;  

Figure 1. Conceptual description of the procedure adopted to study the 
impact of the measurement uncertainty in the context of AI model. 
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6) G is used to compute an estimate 𝑦 of Y and the 

covariance matrix 𝑢𝑖 associated with 𝑦; 
7) G is used to compute the appropriate coverage region 

for Y, for a stipulated coverage probability p;  
In this paper, we will refer to a generical model, with a number 

i of input 𝑥𝑖  and one output 𝑦, which is the measured quantity. 
The input parameters used in this study to measure TSV, were 
chosen on the basis of a previous study explained below: 13 
participants were recruited to carry out a test consisting in 
exposing each participant in a semi-controlled room, in which 
environmental quantities were changed by varying the air 
temperature of the room.  

The sample population involved in the test is made of healthy 
people, not suffering from heart disease in order not to have 
perturbation on the collected HRV; the age of the sample 
population is 31 years ± 6 years old and participants were 7 
females and 6 males. As reported in previous works [9], [23], the 
personal characteristics of the user (e.g., gender) are not included 
in this research since literature has shown that the analysis of 
environmental variables and personal characteristics in the 
prediction of user thermal comfort, does not lead to statistically 
significant results. Moreover, authors did not consider 
differences in age, since literature reports that higher 
temperatures are preferred by elderly people, while lower 
temperatures are more suitable for the younger population; the 
sample population of this experiment is not made of older people 
and therefore authors do not deepen this aspect [9]. 

More in detail, the profile temperature of the test room was 
created as follows: the test room was previously set at 15 °C for 
5 minutes, then the temperature set-point was set to 26 °C, then 
temperature was set back to 15 °C. The total duration was 
lengthened up to 100 minutes. The experiment was performed 
both in January 2020 and January 2021; the outdoor daily average 
temperatures were 8 °C in January 2020 and 4 °C in January 
2021. During the experiment, the participants were sitting at a 
workstation and could perform light office activities (e.g., 
reading, working on the laptop). 

During the test, different quantities were monitored and used 
to train and test AI models for predicting the TSV of the users, 
which was collected during the test [23]. 

The monitored quantities for measuring the TSV to express 
human thermal comfort in this study were: 

- Air temperature (ta); 

- Relative humidity (RH); 

- Air velocity (va); 

- Heart Rate Variability (HRV).  

The list above contains both environmental quantities (ta, RH, 
va) and physiological quantities (HRV).  

The procedure with which the physiological and 
environmental data were acquired consisted in varying the 
environmental conditions of a semi-controlled room, while the 
sensors network acquired continuously these parameters. 
Participants were informed of the purpose of the study and gave 
their informed consent; in addition, the study was validated by 

the ethical committee at Università Politecnica delle Marche. The 
study was carried out in compliance with the principles laid down 
in the Declaration of Helsinki, in accordance with the Guidelines 
for Good Clinical Practice. 

The following paragraphs explain the methodology used in 
this research: in particular, Section 2.1 aims at defining the 
measurement uncertainty associated with each HRV feature, 
derived from HRV, using MCM. Section 2.2 explains how to 
implement MCM in combination with AI models, to assess the 
TSV of participants, using environmental and physiological data.  

2.1 Monte Carlo approach on HRV features 

In this first part of the analysis, MCM is used to estimate how 
the uncertainty of the device through which the HRV is 
collected, influences the computation of the HRV features, that 
will be later used to evaluate human thermal comfort. HRV 
signal, which is made by the distance in time of two subsequent 
RR peaks of the ECG trace, is divided into time frames from 
which it is possible to extract some indices (or features). Each 
time frame is built as follows: the first time frame corresponded 
to 5 minutes of the HRV signal, which is considered the 
minimum time duration recommended for computing HRV 
spectral analysis. After the extraction of the first window, a new 
window was computed by appending a new HRV sample interval 
of the signal, while the oldest sample was removed from the 
beginning of the window; the process was repeated until the end 
of the signal. 

According to the literature, several HRV features, to be 
extracted from the HRV signal, were identified. Time-domain 
HRV features f(HRVt) are a collection of statistical and 
geometrical indices for the measurement of the variability in the 
HRV sequence that act as indices to interpret the oscillations of 
cardiac cycles. The f(HRVt) statistical indices computed in this 
study are: standard deviation of RR intervals (SDANN), root 
mean square of RR (RMSSD), mean value of RR (MEAN), 
median of RR (MEDIAN), percentage of the difference between 
adjacent RR intervals that differs more than 50 ms (PNN50), 
percentage of the difference between adjacent RR intervals that 
differs more than 25 ms (PNN25). In addition, HRV studies 
imply the use of frequency-domain features f(HRVf), which are 
useful for the understanding of the stationarity or stability of the 
HRV signal. To obtain the frequency-domain analysis, the first 
power spectral density (PSD) was computed through the 
autoregression modelling-based method that has proven to 
provide better resolution. Each frequency band was then 
computed: LF (0.04 Hz - 0.15 Hz) and HF (0.15 Hz - 0.4 Hz), 
LF/HF, HF/LF and the total power spectrum (TP). Non-linear 
features f(HRVnl) were also computed through the Poincarè 
plot. The Poincarè plot is a graphical representation of an HRV 
time series along the cartesian plane: the X-axis contains one 
HRV sample, while the Y-axis contains the following HRV 
sample. The Poincarè plot provides two additional features 
obtained by adjusting the point cloud of the figure formed into 
an ellipse; the first index (SD1) represents the dispersion of 
points perpendicular to the identity line, while the second one 

Table 1. Characteristics of the measurement instrument used in the test.  

Input Quantities Manufacturer Model Standard Uncertainty Distribution 

Air temperature (ta) Thermo Sensor GmbH PT100 (4 wired) ± 0,1 ºC Normal 

Relative humidity (RH) Ahlborn FHAD46C41A ± 2% of reading Normal 

Air velocity (va) Ahlborn FVAD05TOK300 ± 3% of reading Normal 

Heart rate variability (HRV) Samsung Samsung Galaxy Watch ± 4 ms Normal 
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(SD2) is the dispersion of point along the identity line of the 
Poincarè plot.  

In this section, there is a first analysis made specifically on the 
individual features of the HRV. In practice, we want to assess 
how it is the uncertainty measurement of each feature, when the 
smartwatch is affected by a specific uncertainty in the 
measurement of HRV; the procedure is summarized in Figure 2. 

First of all, one HRV window of 5 minutes is considered. This 
window will be perturbed with a random sample coming from a 
normal distribution with mean equal to 0, and a standard 
deviation equal to U, for 200,000 iterations. The perturbed HRV 
segment will be used to compute HRV features in order to 
establish the impact of the uncertainty. The final uncertainty is 
computed as the standard deviation of the resulting HRV, by a 
coverage factor k = 2.  

For the simulation study, 13 segments of HRV of a duration 
of 5-minutes, were extracted from the set of experimental 
procedures described previously. The duration of 5 minutes is 
required because is the minimum time required to compute short 
term HRV features.  

2.2 Monte Carlo approach on AI models for measuring human 
thermal comfort  

For this second part of the analysis, the set of HRV features, 
explained in Figure 3, was chosen, [23]. Figure 3 shows the 
approach used to apply MCM and AI: a set of input parameters 
was used to train RF regression algorithm and a CNN, to predict 

the TSV, output of the algorithm. Once the models are trained, 
the procedure consists in perturbing the input parameters (HRV, 
ta, RH, va) one at a time, with different uncertainties, maintaining 
constant the other quantities, and applying the trained model to 
each perturbed set of features, to obtain the final measurement 
of the TSV. It is worth noting that the current analysis is 
conducted locally, by choosing one observation of the whole 
dataset; the final result is therefore associated to the chosen 
observation. 

Characteristics of the sensors used to collect environmental 
parameters, and the measurement uncertainty employed to 
perturb the different parameters are shown in Table 1. 

Sensitivity Analysis 

A sensitivity analysis (SA) is performed to identify and 
quantify what are the main sources of uncertainties in the 
measurement. Ideally, SA is the methodology for studying how 
the uncertainty of the output provided by a model, can be 
associated, qualitatively or quantitatively, to different 
uncertainties of the input parameters of the model [27], [28]. 

The GUM Supplement also provides the specifications for 
assessing the sensitivity coefficients; more in detail, it is explained 
that MCM is not sufficient to fully compute sensitivity 
coefficients but provides a methodology to compute the 
influence of each input quantity on the output quantity [13].  

 
Figure 2. Description of the MCM adopted to evaluate the impact of the smartwatch uncertainty on the HRV features, that will be used to measure and 
assess human thermal comfort.  

 
Figure 3. Description of the procedure adopted to apply MCM to the measurement of thermal comfort, with a heterogeneous set of data.  
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The procedure implies that one input quantity should be 
perturbed, and the remaining input quantities should be kept at 
their best estimates, in order to obtain the pdf of the output 
quantity, depending only on the variable perturbed. By using this 
procedure, the GUM supplement proposes an approach that can 
be representative as a generalization of the approximate partial-
derivative formula; in particular, it is reported that the sensitivity 
coefficients can be approximated as the ratio of the standard 
deviation of the resulting model values and the standard 
uncertainty associated with the best estimate of relevant input 
quantity, as reported in Eq. 1: 

𝑐𝑖 =
𝑢𝑖(𝑦)

𝑢(𝑥𝑖)
 , (1) 

where 𝑐𝑖 is the sensitivity coefficient, 𝑢(𝑥𝑖) is the standard 

uncertainty associated with the ith input estimate 𝑥𝑖 , that 

contributes to the standard uncertainty 𝑢𝑖(𝑦). 

3. RESULTS  

3.1 Impact of the uncertainty of measurement on the HRV 
features 

In this section, results of the MCM used to analyse the 
propagation of the uncertainty in the measurement of HRV that 
propagates to the computation of the HRV features, are shown. 

The simulated results are used to obtain the frequency histogram 
of each HRV features that are computed with the simulation, to 
obtain the related uncertainty. For each HRV features the values 
of the standard uncertainty computed with the MCM are shown. 
The frequency histograms that come out of one simulation for 
one participant, are displayed in Figure 4.  

Table 2 contains the uncertainty associated with the 
computation of each HRV feature, expressed in percentage, 
among the 13 participants. It can be seen that the minimum 
measurement uncertainties are obtained when computing the 
MEAN feature (± 0.01 % of reading), while the highest values 
are associated with the measurement of LF/HF and HF/LF 
(± 0.7 % of reading).  

Physiological quantities, such as HRV, can vary among 
participants and therefore it is interesting to understand the 
impact of the uncertainty on each feature, divided according to 
the related domain, among the different users, to see if it is 
possible to establish a generalized standard uncertainty 
associated to each HRV features, in relation to the value of the 
uncertainty of the device which measures it. 

The uncertainty associated with the features in the frequency 
domain is higher than the features in the time or the features in 
the non-linear domain. A reason that can explain this result is 
that the frequency components are more sensitive to the 
uncertainty of the device (± 4 ms) because they physically reflect 

Table 2. Measurement uncertainty computed for each HRV features used to estimate the TSV, among the 13 participants. 

ID 
Uncertainty (%) 

MEAN  RMSSD MEDIAN LF HF LF/HF HF/LF SD1 SD2 SD1*SD2 

1 0.01 0.10 0.09 0.34 0.30 0.4 0.4 0.10 0.1 0.2 

2 0.01 0.08 0.09 0.31 0.25 0.4 0.4 0.08 0.1 0.1 

3 0.01 0.29 0.07 1.30 0.81 1.5 1.5 0.29 0.3 0.5 

4 0.01 0.11 0.08 0.53 0.55 0.6 0.6 0.11 0.1 0.2 

5 0.01 0.25 0.06 0.93 0.58 1.1 1.1 0.25 0.2 0.4 

6 0.01 0.10 0.08 0.30 0.28 0.4 0.4 0.10 0.1 0.2 

7 0.01 0.16 0.10 0.57 0.59 0.6 0.6 0.16 0.1 0.2 

8 0.01 0.04 0.13 0.26 0.12 0.3 0.3 0.04 0.0 0.1 

9 0.01 0.12 0.08 0.31 0.32 0.5 0.5 0.12 0.1 0.2 

10 0.01 0.24 0.06 0.92 0.58 1.1 1.1 0.24 0.2 0.4 

11 0.01 0.09 0.07 0.31 0.25 0.4 0.4 0.09 0.1 0.1 

12 0.01 0.30 0.08 0.66 0.79 1.0 1.0 0.30 0.2 0.4 

13 0.01 0.06 0.10 0.26 0.19 0.3 0.3 0.06 0.1 0.1 
           

µ 0.01 0.1 0.1 0.5 0.4 0.7 0.7 0.1 0.1 0.2 

     

    

 

Figure 4. Histogram obtained from MCM with 200,000 iterations applied to the HRV features. 
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the oscillatory activity of the HRV; for this reason, it can be 
verified that a small variation of HRV can lead to a greater 
variation of features in the frequency domain.  

 
3.2 Impact of the uncertainty on AI models for measuring human 

thermal comfort  
This section reports the results used to compute the 

measurement uncertainty of the TSV, using MCM applied to AI 
models, which are RF and CNN. Table 3 contains the results 
which represent the contribution of the uncertainty of each input 
quantity (HRV, ta, RH, va) into the AI model, to estimate the 
associated uncertainty in the output TSV. Each pdf of the input 
quantity is used, one at a time, according to Monte Carlo 
simulation, to obtain the resulting pdf of the TSV. The following 
table contains the results of an MCM conducted by perturbing 
each parameter, one at a time, with the respective uncertainty 

𝑢𝑖(𝑦) , where 𝑖 are the perturbed parameters.  
The simulation regarding the impact of the HRV uncertainty 

of the TSV was made for ± 4 ms. Since HRV measurement 
through smartwatches is particularly prone to motion artifacts, 
more simulations were conducted by simulating different HRV 
uncertainties, which are U = [4, 10, 20, 50, 100] ms. The results 
of the simulations are shown in Figure 5: the contribution of 
HRV uncertainty increases after 50 ms, suggesting that up to this 
value, the uncertainty of the devices that measure HRV is still 
acceptable for assessing the TSV.  

On the other hand, environmental sensors that measure ta, 
RH and va, are less subjected to variations in the uncertainty of 
the measurement of TSV. Environmental quantities produce 
different uncertainty on the TSV, which depends on different 
parameters. RF has highest uncertainty due to the ta (𝑢𝑡𝑎

(𝑦) = 
14 %), while CNN has highest uncertainty when RH is perturbed 
(𝑢𝑅𝐻(𝑦) = 10.5 %). This different result is explainable if we 
consider that the two algorithms perform with different rules and 
can be considered as black boxes.  

Sensitivity Analysis  

In Table 4 the partial uncertainty budget due to each 
parameter is given according to GUM uncertainty framework; 
the sensitivity coefficients were evaluated by Monte Carlo 
simulation. According to the table, SA highlights that air velocity 
and air temperature are the parameters that most affect the TSV 
prediction, respectively for RF and CNN.  

RH, and HRV perturbed with ± 4 ms are the less sensitive 

parameters in the measurement of TSV, while va is the parameter 

that mostly contributes to the TSV measurement uncertainty. 
This outcome is consistent with the test procedure, which 

implied that during the experiment, to generate thermal 
discomfort, the window was opened, and the participant 
reported experiencing greater discomfort. 

4. DISCUSSION 

Depending on the kind of algorithm trained than can be both 
ML and DL algorithms, there are different quantitative results in 
the uncertainty of the TSV, using an MCM, with 200,000 
iterations, in relation to the environmental parameters. RF 
provides greater uncertainty when ta is perturbed with an 
uncertainty of ± 0,1 ºC; on the contrary, CNN exhibits a higher 
uncertainty when RH is perturbed with ±2% of reading. 
Physiological parameter (HRV signal), when perturbed with ±4 
ms of uncertainty, impacts the resulting TSV with 2.8 % of 
uncertainty and > 0.001 % when it comes with CNN and RF 
respectively. 

In addition, MCM on AI models for measuring human 
thermal comfort (Section 2.2) is applied to one observation of 
the entire dataset, and therefore it is a local analysis that is 
strongly related to the trained model. The overall methodology 
presented in this paper can be applied to brand new models, that 
do not include an analytical equation, to compute the uncertainty 
associated with the output of the model.  

MCM is a powerful tool that can be used to simulate the 
results of the impact of more than one measurement uncertainty, 
such in the case of the analysis presented in the manuscript in 
Section 3.2, in which HRV is perturbed with a set of uncertainty 
that ranges from ± 4 ms to ± 100 ms. The impact of this study 
is that MCM can be applied in a variety of circumstances in which 
the analytical model that represents the relationship between 
input and output is not known, such in the case of AI models, 
but the initial perturbation can be simulated. When the 
measurement uncertainty of the device is not available, the 
uncertainty can be therefore hypothesized and simulated, or 
eventually a calibration to determine the uncertainty can be 
performed. 

5. CONCLUSION 

This paper presents an approach to assess the measurement 
uncertainty of human thermal comfort, expressed in terms of 
TSV, by using a method that comprises a heterogeneous set of 
data, made by physiological and environmental quantities, and AI 
models. The objective is therefore to quantify the measurement 
uncertainty of the TSV, while the user is performing light-office 
activities, by using GUM guidelines and applying MCM.  

Table 3. Results of MCM applied to compute the measurement uncertainty 𝒖𝒊(𝒚) of the measurement of the TSV, both for the RF and the CNN algorithm. The 
uncertainty was computed considering a coverage factor k equal to 2. 

 RF CNN 
 HRV ta RH va HRV ta RH va 

Standard uncertainty ± 4 ms ± 0,1 °C ± 2% of reading ± 3 % of reading ± 4 ms ± 0,1 °C ± 2 % of reading ± 3 % of reading 

TSV Estimate (µ) 1 1.4 1.4 1.4 -0.5 -0.5 -1.2 -1.2 

𝑢𝑖(𝑦) [TSV unit] (σ) 7.46E-14 0.2 1.78E-13 0.0105 0.015 0.015 0.126 0.029 

𝑢𝑖(𝑦) [%] 7.24E-12 14 1.28E-11 0.8 2.825 2.9 10.5 2.5 

Table 4. Sensitivity coefficients compute for the two algorithms.  

 HRV ta RH va 

Standard Uncertainty ± 4 ms ± 0,1 °C ± 2 % of reading ± 3 % of reading 

Sensitivity Index RF 1.87E-14 1.8 4.61E-13 5.8 

Sensitivity Index CNN 0.004 0.09 0.32 16.03 
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A preliminary analysis was conducted to assess the impact of 
the measurement uncertainty of the instrument used to collect 
HRV, which is a commercial smartwatch. MCM was applied to 
compute the uncertainty associated with the features extracted 
from HRV, which will be later fed into an RF and CNN model. 
Results have shown that among 13 participants, there are 
uncertainty values in the measurement of features that ranges 
from ± 0.01 % to ± 0.7 %, suggesting that among different users 
the uncertainty can be generalized. 

Then, MCM was applied by perturbing a set of parameters 
(HRV, ta, RH and va) to compute the uncertainty in the 
measurement of the TSV, using RF model and a CNN. Results 
have shown that environmental quantities produce different 
uncertainty on the TSV. RF has the highest uncertainty due to ta 
uncertainty (U = 1 %), while CNN has the highest uncertainty 
when RH is perturbed (U = 10.5 %). On the other hand, the 
sensitivity analysis that expresses the relationship between the 
TSV and the input parameters highlights that va is the parameter 
that causes the greatest variation on the TSV.  
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