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1. INTRODUCTION 

Sign language recognition (SLR) is a research area that 
involves gesture tracking, pattern matching, computer vision, 
natural language processing, linguistics, and machine learning [1]. 
The final goal of SLR is to develop methods and algorithms to 
build an SRL system (SLRS) capable of identifying signs, 
decoding their meaning, and producing some output that the 
intended receiver can understand (Figure 1). 

The general SLR problem includes the following tasks: 
1) letter/number sign gesture recognition, 
2) word sign gesture recognition, and 
3) sentence-level sign language translation  

Available literature surveys [2]-[5] report that recent research 
achieved accuracy in the range of 80–100% for the first two tasks 
using vision-based and sensor-based approaches. 

In this paper, we compare the performance of the two 
systems we developed: a vision-based system and a hybrid system 

with sensor-based data acquisition and vision-based classification 
stages. 

1.1. SLRS Performance Assessment 

In the instrumentation and measurement field, machine 
learning is used for processing indirect measurement results. An 
indirect measurement is defined in [6] as a “method of measurement 
in which the value of a quantity is obtained from measurements 
made by direct methods of measurement of other quantities 
linked to the measurand by a known relationship.” In the 
machine learning (ML) common jargon [7], the quantities that 
can be measured with a direct method are denoted as features x1, 
x2, …, xn, and the measurand as y. The measurand y is linked to 
features by a functional relationship y=f(x1, x2, …, xn). The 
process of estimating f is known as “training.” In the training 
process, the ML model is trained with the given dataset to find 
the best possible approximation according to the selected 
optimality criterion. The trained model produces an estimation 
of y in response to the vector x=(x1, x2, …, xn). 
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In the case of classification systems, the measurand y is the 
class to which an input vector x belongs. The most widely used 
performance metric for gesture SLRS is classification accuracy 
(defined as the ratio of correct predictions over the total 
predictions). In this work, accuracy was adopted both for model 
benchmark and as model optimality criterion. 

1.2. Sign Language 

Sign language (SL) is defined as "any means of 
communication through bodily movements, especially of the 
hands and arms, used when spoken communication is impossible 
or not desirable" [8]. Modern sign language originated in the 18th 
century when Charles-Michel de l'Épée developed a system for 
spelling out French words with a manual alphabet and expressing 
whole concepts with simple signs. Other national sign languages 
were developed from this system and became an essential means 
of communication among the hearing-impaired and deaf 
communities. According to the World Federation of the Deaf, 
today exist over 200 sign languages used by 70 million deaf [9].  

Sign language involves using facial expressions and different 
body parts, such as arms, fingers, hands, head, and body. One 
class of sign languages, also known as fingerspelling, is limited to 
a set of manual signs that represent the symbols of the letters of 
an alphabet performed with one hand [10]. The ASL signs of the 
alphabet letters are shown in Figure 2. 

1.3. Vision-Based vs. Sensor-Based Approaches for Hands Tracking 
and Gesture Recognition 

Many common devices and applications rely on tracking 
hands, fingers, or handheld objects. Specifically, smartphones 
and smartwatches track 2D finger position, a mouse tracks 2D 
hand position, and augmented reality devices like the Microsoft 
HoloLens 2 track the 3D pose of the finger. In addition to SLR, 
many other applications rely on hand gesture recognition such as 
augmented reality [12], assistive technology [13], [14], 
collaborative robotics [15], telerobotics [16], home automation 
[17], infotainment systems [18], [19], intelligence and espionage 
[20] and many others [21]. 

In this paper, we focused on recognizing static hand gestures 
associated with the letters of the alphabet for fingerspelling. Both 
computer-vision-based and sensor-based approaches were 
implemented for sign language alphabet recognition. Hand 
features extraction is a significant challenge for vision-based 
systems [11] because extraction is affected by many factors, such 
as lighting conditions, complex backgrounds in the image, 
occlusion, and skin color. Sensor-based gesture recognition 
systems are commonly implemented as gloves featuring various 
types of sensors. Sensor-based approaches have the advantage of 
simplifying the detection process and can help make the gesture 
recognition system less dependent on input devices. On the 
other hand, a disadvantage of sensor-based systems is that they 
can be expensive and too invasive for real-world deployment. 

2. VISION-BASED SIGN LANGUAGE GESTURE RECOGNITION  

Machine learning techniques are widely adopted for gesture 
classification tasks. Various public datasets are available for 
system performance assessment and benchmark. The American 
Sign Language MNIST Dataset [22], a flavor of the classic 
MNIST dataset [23], created for sign language gesture, is often 
used as a baseline. Other more complex datasets such as [24], 
[25] are also available. 

2.1. Classic Machine Learning and Convolutional Neural Network 
on MNIST Dataset 

The American Sign Language MNIST Dataset is in a tabular 
format similar to the original MNIST dataset. Each row in the 
CSV file has a label and 784 pixels values ranging from 0-255, 
representing a single 28 × 28 pixels greyscale image. In total, 
there are 27,455 training cases and 7,172 tests cases in this 
dataset. The classification accuracy was selected as the primary 
metric for models’ performance assessment and benchmarking 
with other published comparable works.  

Two different models were trained to accomplish the 
letter/number gesture recognition task from static images using 
two different approaches: a classic ML model and a deep neural 
network (Figure 3). 

The first model was selected among many model candidates 
obtained by applying different combinations of features 
engineering techniques, ML algorithms, and ensemble methods 
using the Automated ML (AutoML) service of Azure Machine 
Learning. Azure Machine Learning [26] is a cloud-based platform 
that provides tools for automation and orchestration of all 
training, scoring, and comparison operations. AutoML tests 
hundreds of models in a few hours with parallel job execution 
with no human interaction after the initial experiment and 
remote compute target cluster setup. The experiment generates 
many models that achieve 100% classification accuracy. Among 

 

Figure 1. Block diagram of a sign language recognition system (SLRS).  

 

Figure 2. Letters of the American Sign Language (ASL) alphabet [11].  
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them, the “Logistic Regression” based model has a smaller 
memory footprint at runtime. 

The second model was created with a minimal custom 
convolutional neural network (CNN) architecture (2D 
convolution, max pooling, flatten, dense layer, dropout, dense) 
commonly used for simple deep learning image recognition tasks 
(Figure 4). The model was built and trained with the Keras 
library. Model hyperparameters such as the number of neurons 

in layers, batch size, the number of training epochs, and dropout 
percentage were tuned using the HyperDrive service from Azure 
Machine Learning. The best scoring model achieves a 
classification accuracy score of 99.99%. 

The best models from the two training pipelines were 
deployed as web services for production usage. 

The (zipped) size of the CNN model is about 17 MB when 
the logistic regression model size is only 0.8 MB. Simple and 
lightweight models should be preferred if there is no 
performance penalty. 

2.2. Vision-based Classification Accuracy 

The 100% accuracy was confirmed after deployment with test 
cases from the American Sign Language MNIST.  

Simple classic ML models could not recognize gestures in 
realistic images with variable backgrounds and light conditions. 
The CNN model scores over 90% accuracy on a subset of the 
"ASL Alphabet" [24] image dataset that includes more "realistic" 
light and background conditions. However, while deployed as a 
web service, the performance on image stream from a live 
camera was not satisfactory for production usage in challenging 
conditions such as partial line of sight obstruction, presence of 
shadows in the image, and confusing backgrounds like in the test 
case of ASL Alphabet Test dataset [25]. 

3. SENSOR-BASED GESTURE RECOGNITION WITH DEEP CNN 
ON VISUAL GESTURE REPRESENTATION  

Our experiment with a vision-based approach confirms both 
performance and limitation described in other works. Given the 
result of our experiments and other works, in this paper, we 
propose an SLRS system that combines a sensor-based approach 
in the acquisition stage and computer vision techniques in the 
gesture recognition stage (Figure 5). 

3.1. Hand Tracking with Magnetic Position System (MPS) 

The magnetic Positioning System (MPS) described in [27] is 
immune from many problems that affect computer vision 
techniques such as occlusion, light condition, shadows, skin 
colors.  

The MPS is composed of transmitting nodes and receiving 
nodes. The transmitting nodes are mounted on the fingers and 
hand to be tracked (Figure 6), whereas the receiving nodes are 
placed at known positions on the sides of the operational 
volume. An advantage of the sensor-based systems is that they 
are not sensitive to illumination conditions and the other factors 
affecting vision-based systems. Furthermore, MPS can also 
operate in the presence of obstructions caused by objects or body 
parts. Therefore, the proposed approach enables robust and 
reliable tracking of the hand and fingers. It is thus suitable for 
SLR and the other applications of hand gesture recognition, such 
as human-machine interaction, virtual and augmented reality, 
robotic telemanipulation, and automation. 

 

Figure 3. Workflow for the comparison of various machine learning models 
for static gesture recognition using Azure SKD, AutoML and HyperDrive for 
operations automation. 

 

Figure 4. Deep CNN model architecture. 

 

Figure 5. Proposed SLRS with sensor-based data acquisition and vision-based gesture recognition.  
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3.2. Gesture Recognition Using Skeleton Reconstruction 

Classic machine learning models can achieve 100% accuracy 
on static sign language recognition tasks on laboratory datasets 
like [24]. CNN deep learning models score high accuracy (over 
90%) on realistic images. Classic machine learning models can 
achieve 100% accuracy on static sign language recognition tasks 
on laboratory datasets. CNN deep learning models score high 

accuracy (over 90%) on realistic images with variable light. 
However, these high performances are not robust and cannot be 
easily replicated in real-world operating conditions. 
In our paper [11], we demonstrated that training the classification 
model on data from a tracking system gives substantial 
advantages in terms of robustness to environmental conditions 
and signer variability. 

The hand gesture is reconstructed using the technique 
illustrated in [28], with the improvements added in [11], which 
we called MagIK (magnetic and inverse kinematics). The 
method, with some empirical modification introduced in the 
model to optimize the reconstruction of the gesture among 
different test subjects, allows reconstructing the movement of 
the hand with 24 degrees of freedom (DOF). Positions and 
orientations of all the magnetic nodes estimated by the MPS are 
sent to a kinematic model of the hand, to obtain the position and 
flexion of each joint and the position and orientation of the 
whole hand with respect to the MPS reference frame. As the last 
step, MagIK produces a visual representation, such as the 
examples shown in Figure 7. We call this technique “skeleton 
reconstruction”. 

3.3. Efficient Deep CNN Training for Sign Language Recognition 

Many pre-trained deep learning models are proven to be 
adequate for image/video classification tasks. We chose the 
ResNet34 CNN because the ResNet (residual network) 
architecture achieves good results in image classification tasks 
and is relatively fast to train [29]. 

Figure 8 illustrates the training pipeline implemented with 
PyTorch and FastAI [30] library. Transfer learning approaches 
allow fast training of the deep CNN (ResNet34) model. 

The optimal learning rate for training was estimated with the 
Cyclical Learning Rates method [31] to avoid time-consuming 
multiple runs to perform hyperparameters sweeps. 

The rules of thumb for the selection of learning rate value 
from [31] are: 

1) one order of magnitude less than where the 
minimum loss was achieved; and 

2) the last point where the loss was clearly decreasing. 
The Loss estimation plot (Figure 9) produced by the algorithm 
implementation in the FastAI library suggested a learning rate in 
the range 10-2 – 10-3. 

Model fine-tuning was performed using FastAI API with a 
sequence of freeze, fit-one-cycle, unfreeze, and fit-one-cycle 
operations using the «discriminative learning rate» method. The 
training continued until error rate, validation loss, and training 
loss converged to zero after four epochs (Figure 10). 

3.4. Gesture Classification Inference with MPS 

The trained model, after the fine-tuning process, was 
developed in an inference pipeline (Figure 11) that takes the 

 

Figure 6. MPS transmitting coils mounted on a wearable glove. 

 

Figure 7. Examples of ASL letters (Y and L) articulated while wearing the glove, 
and their respective reconstructions obtained through the kinematic model 
and MagIK technique.  

 

Figure 8. Training pipeline for ResNet43 CNN with transfer learning.  
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output generated by MPS control software and, for each acquired 
frame: 

1) Reconstructs the gesture using MagIK model 
kinematic model, 

2) Exports the visual representation as a bitmap image, 
3) Feeds the CNN model with the generated gesture 

image and get the array of confidence values 
associated with each class in the training dataset, and 

4) Printouts the label of the sign class with the highest 
confidence value. 

4. CONCLUSIONS 

Classic machine learning models can only achieve 100% 
accuracy on static sign language recognition tasks on laboratory 
datasets [22]. Deep CNN models can accomplish the task with 
over 90% accuracy also on more realistic images [24]. However, 
these high performances are not robust and cannot be replicated 
in real-world operating conditions. Combining sensor-based 

acquisition, visual reconstruction of the skeleton, and a deep 
CNN classification model, the proposed system achieves 100% 
inference accuracy on gestures performed by different people 
after a few epochs of training. We cannot achieve 100% accuracy 
with classic machine learning in comparable experimental 
conditions. 

The sensor-based approach is immune from many problems 
that affect computer vision techniques such as occlusion, light 
condition, shadows, skin colors. Building a gesture recognizer on 
top of a tracking system, instead of direct classification from a 
sensor stream, can help make the gesture recognition system less 
dependent on input devices. Skeleton tracking allows for good 
generalization: system performances are robust across different 
sign performers and classifications do not rely on specific hand 
characteristics. 

The classification method implemented in this work can be 
applied to almost any sensor-based dataset: the only requirement 
is to provide a convenient visual representation of input data to 
be used both in training and inference. After replacing the 
MagIK with another method suitable for the specific application, 
other stages of the training pipeline and inference pipeline do not 
need any change and can be directly used for many other 
applications. 
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