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1. INTRODUCTION 

Natural gas hydrates are crystalline solids composed of water 
(host) and gas (guest). The guest molecules are trapped inside ice 
cavities, which are composed of hydrogen-bonded water 
molecules. Typical natural gas molecules include methane, 
ethane, propane and carbon dioxide. Hydrate particles can form 
ice-like hydrate-plugs that completely block the pipeline and can 
be up to several meters long. The number of hydrate molecules 
can increase to a level where the molecular agglomeration 
process begins, which can cause of plug formation in a given 
section of the pipeline. In worst cases the hydrate plugs result 
production outages [1], [2]. 

In the mid-1930s Hammerschmidt found out that natural gas 
hydrates can block gas transmission, especially at low 
temperatures. This discovery was pivotal and shortly thereafter 
led to the regulation of the water content in natural gas pipelines. 
The detection of hydrates in pipelines is a milestone marking the 
importance of hydrates to industry [3].  

Gas wells are the cores of developing serious hydrate 
problems, because of the water content of the production. The 
cold zones of the ground can shift the temperature of the pipe 
and its contents into the hydrate-formation region. Hydrates start 
forming layers of water on the pipe walls. Crystallisation can 
result in the formation of tens or hundreds of meters long plugs 
of hydrate [1], [4]. 

Multiple techniques exist to prevent the formation of 
hydrates. In the gas industry one of the most popular solutions 
is the use of thermodynamic inhibitors (THI) for a prolonged 
time. The injection of THI shifts the hydrate curve to a region 
where the conditions are not adequate for stable hydrate 
formation [2]. These compounds (methanol, ethylene glycol) 
have to be injected in high volume to the gas to be effective 
against hydrate formation. This is not a modern solution, because 
it has several disadvantages like cost of additional pipelines 
necessary to lead to the gas wells [5], the cost of methanol 
regeneration, which also contaminates the environment. 

One of the newer alternatives is the injection of low- dosage 
hydrate inhibitors such as kinetic hydrate inhibitors which can 
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prevent the growth of hydrate molecules [6]. Antiagglomerants 
also belong to this group, they allow for the formation of gas 
hydrates but keep the hydrate crystals small and dispersed [7]. 
These modern, low-dosage inhibitors enable the usage of locally 
installed injection systems in the field, at the site of gas wells [8]. 

As can be seen, hydrate detection is key to administering the 
appropriate amount of inhibitor. 

1.1. Objective and Methodology 

The paper compares two approaches. In the first one, the 
formation of gas hydrate was studied in laboratory conditions. 
The gas hydrate formation can be determined from the pressure 
curve. Using the measurement results, a single solution based on 
an Artificial Neural Network (ANN) was created where the input 
is the differential pressure. In the second project, test 
measurements were performed with a field hydrate dosing and 
monitoring system. Using the measurement results, a multi-input 
ANN-based solution was developed, where the inputs are 
pressure, temperature, quantity and quality of inhibitor as these 
also influence hydrate formation. 

In the first method measurements were performed by a self-
developed and produced equipment. Modelling the equipment is 
suitable for the simulation of the gas flow in the pipeline. Its 
conditions are as follows: temperature is in the range 
of -20 … +30 °C, and typical gas pipeline pressure is in 
1-10 nl/min flow rate range. During the measurements, different 
inhibitor materials and gases from all over Hungary were used, 
and the values of differential pressure, inlet pressure, the gas 
temperature and the flowrate of the pipeline were recorded, but 
only differential pressure was used to teach neural networks. 

In the second approach data are used from the measurement 
system of a motorised chemicals-injector device, placed in the 
area of a well. This model was installed to test the equipment at 
the site of the SCADA Ltd, near Hajdúszoboszló in Hungary. 
The following parameters were monitored there: well siphon 
pressure, drill pipe pressure, injection pipe pressure, well pipe 
pressure, well pipe temperature, soil temperature, temperature of 
chemicals, controller temperature, inverter temperature, 
chemical tank liquid level, inverter current, voltage and 
frequency. Only well pipe pressure (pressure), well pipe 
temperature (temperature) and inverter frequency (quantity of 
inhibitor) were used to teach neural networks. 

After the successful test of the technology model, the 
equipment was transported to a real gas well in Szeghalom 
(Hungary). In the research data generated through 29 test weeks 
were used. The gas well was monitored online (one sample per 
minute) in the 29-week testing period, during which several 

hydrate plugs formed due to the weather conditions. The most 
important parameters of both approaches (equipment, inputs, 
outputs, ANN) are in Figure 1 and Figure 2. 

The goal was to develop an accurate, stable and reliable ANN-
based structure. Several architectures have been studied. Finally, 
the Neural Network Auto-Regressive X (NNARX) model with 
exogenous input [9] and Neural Network Output Error (NNOE) 
model are presented [10]. 

Several independent data sets were needed for training 
networks. Previously selected raw data were scaled and 
normalised. The resulting data were used to generate three 
training, validation and test datasets for the networks. 

1.2. Results 

Final versions of ANN-based predictive detection solutions 
were selected after the extended comparison processes. In the 
first approach NNARX and NNOE were used. In the second 
approach only NNARX was used. In both cases several networks 
were trained using different datasets. For the first neural network 
based predictive detection solution twelve, while for the second 
six networks were compared and the best one is selected. In both 
cases a relatively small and simple networks resulted the best 
performance. Finally, the predictive solutions were compared. 

2. RELATED RESULTS IN THE LITERATURE 

Even though the injection of methanol into natural gas is not 
advised due to environmental concerns, such experiments can be 
found in the scientific literature. For example, in [11] French and 
English researchers reported that methanol was injected into the 
pipeline, in an environmentally not-so-friendly manner to 
prevent the formation of hydrates for gas extraction in the North 
Sea. The Karl Fischer method was used for injection. It is not the 
most appropriate approach, because it doesn't take salt content 
into account. As a result, new method was developed, by which 
the electrical conductivity and the sound propagation velocity 
can be measured in addition to the temperature and the pressure. 
Using these four parameters and the devised method, the 
methanol injection can be kept at an optimum. The paper 
published in 2013 in [12] also deals with optimising the methanol 
injection for the inhibition of hydrate formation in industrial 
processes. Authors stress the importance of the vapour state 
methanol, because it doesn't participate in the hydrate formation 
inhibition. To determine the quantity of inhibitor, two methods 
were introduced. The first one is a mathematical correlation from 
real data sets, the second one is based on ANN.  

Figure 1. The two compared project – first approach. 

 

Figure 2. The two compared project – second approach. 
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Naturally, scientific literature does not only deal with 
methanol injection but also ones that utilise mono-ethylene 
glycol or some other inhibitor related to remedial methods. 

One example is by Kamaria et al. [13] who realised machine 
learning by using a least-squares support-vector machine.  

The hydrate formation in the pipeline can be predicted and 
the mono-ethylene glycol amount necessary for the hydrate 
inhibition can also be estimated [14] based on the method 
developed by Suykens et al. 

The other non-methanol based hydrate formation inhibitive 
method was used by Elgibaly et al. This work deals with the use 
and development of neural networks, related to the optimisation 
of hydrate formation inhibition. To validate their model, 
experimental data was used which contains hydrate formation 
environmental information, gas composition, hydrate inhibitor 
composition, system pressure and density. The model takes the 
evaporation of the inhibitor into consideration. The devised 
method suggests inhibitor injection ratios for gases of various 
composition [15]. 

Numerous scientific literature deals with hydrate formation 
temperature. The method devised by Mesbah et al. [16] uses a 
least squares support vector machine algorithm to predict the 
hydrate formation temperature. The authors used data available 
in scientific literature for multiple gas compositions and created 
a data set for machine learning. The model is more accurate for 
gases with H2S content.  

An empirical correlation between temperature, gas pressure 
and density, by which the hydrate formation temperature can be 
determined was shown by Khamehchi et al. [17]. This method 
was further refined using measurement data and ANN. The 
method gives accurate results. 

Zahedi et al. [18] published two methods for the assessment 
of hydrate formation temperature. The first method using two 
correlations, with eleven and eighteen parameters. The 
parameters were obtained from measurement data and scientific 
literature. The second method using ANN and the data from the 
previous method. 

The problem of the accurate assessment of hydrate formation 
is discussed in [19]. Authors use the Katz gas-gravity method 
with the Ghiasi correlation [20]. The same model was used with 
the imperialist competitive algorithm [21]. The ANN was used 
to determine a kinetic model for the prediction of methane gas 
hydrate formation. The authors tried to determine the correct 
number of hidden neurons and layers. The ANN-based model 
takes the temperature and pressure as the inputs and the output 
is the hydrate growth speed. In [22] comparison was made 
between two methods for the inhibition of gas hydrate 
development. Both use ANN, in the second it is optimised with 
the imperialist competitive algorithm [23]. The outcome met 
expectations and proved that the normal neural network 
provides better results than the optimised one [23], [24]. 

3. DESCRIPTION OF THE PROPOSED METHO 

In this section, two systems providing the measurement data 
are presented. Also, predictive hydrate detection methods are 
introduced. 

3.1. Hydrate Forming Test Equipment 

In the first analysis measurements have been performed by a 
hydrate forming test machine developed for MOL Plc. by the 
Department of Research Instrumentation and Informatics at the 
Research Institute of Applied Earth Sciences. Development of 
the control system was carried out by the author, Figure 3. 

The modelling equipment is suitable for simulation of gas 
pipeline flow. The equipment creates field conditions 
within -20 … 30 °C temperature range, and original gas pipeline 
pressure range, which is typically 60 bars. The flow rate value can 
be set in accordance to modelling principles, between 1-10 
nl/min. The hydrate forms inside of a capillary cell which is 
placed in a thermostat. Figure 4 shows the piping and 
instrumentation (P&I) diagram of the equipment. 

Where PT is the Pressure Transmitter, TT is Temperature 
Transmitter, FT is Flow Transmitter, GT is Gas Tank, PG is 
Pressure Gauge, TC is Temperature Control, TE is Temperature 
Element, VA is Valve, SP is Pressure Generator unit, PC is 
personal computer, HC is buffer cell, c is glass cell, DC and DR 
are separator cells.  

The operation of the equipment is as follows: The dehydrated 
natural gas is discharged from the Gas Tank into the pipeline. 
The Pressure Gauges are used to set the system pressure and the 
Flow Transmitter is used to adjust the flow rate. Pressure 
Generators mix the formation water and inhibitor with the 
natural gas. The pipeline goes through the low temperature 
thermostat (TE) and it cools the natural gas therefore hydrate 
formation can begin. The formation of the hydrate plug can be 
detected from the measured differential pressures (PT2, PT3). 

Natural gas and interfacial water from a Szeghalom gas well 
(Hungary, near to Füzesgyarmat) were used in tests. Different 
inhibitor mixtures were also added. 

Gas hydrate formation time was examined under gas well 
conditions (60 bar pressure, low temperature), with or without 
the addition of different inhibitors. The following parameters 
were recorded: pressure, differential pressure, temperature and 
flow rate [25].  

 

Figure 3. Hydrate Forming Test Equipment. 

 

Figure 4. P&I diagram of the hydrate forming test equipment. 
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3.2. Control and Chemical Dosing Equipment 

The well area control and the chemical injector equipment 
was installed on Szeghalom-29 well in Füzesgyarmat (Figure 5). 

The injection system is optimised mainly for Hungarian gas 
wells. Thus, the temperature requirement of the system was in 
the -40°C … 60°C range. The system must be capable of working 
in EX (EXplosive atmosphere) environment with high 
efficiency. The power source of the actuator is solar energy to 
reach the almost zero emission of the system [25]. Figure 6 shows 
the P&I diagram of the equipment, where PT is Pressure 
Transmitter, TT is Temperature Transmitter, LT is Level 
Transmitter and PI is Pressure Indicator. 

The operation of the equipment is as follows: The natural gas 
- which contains natural interfacial water - entering the pipeline 
from the gas well. The inhibitor is located in a Chemical Tank 
and is delivered to the pipeline by the Dosing Pump. The dosing 
rate is provided by a PLC control, which is not shown in the 
figure. The formation of the hydrate plug can be detected from 
the value measured by the pressure transmitters (PT12). 

The following parameters were recorded on a minute basis: 
well siphon pressure, drill pipe pressure, injection pipe pressure, 
well pipe pressure, well pipe temperature, soil temperature, 
temperature of chemicals, controller temperature, inverter 
temperature, chemical tank liquid level, inverter current, voltage 
and frequency [25]. The output of the system is the inverter 
frequency. The frequency is proportional to the amount of 
administered inhibitor. 

3.3. Neural Networks 

In black-box identification of nonlinear dynamic systems, 
selection of model structures become more difficult task. The 
multilayer perceptron network is most popular for learning 
nonlinear relationships from a set of data. For the identification 
the NNARX and NNOE were used [26]. These models are 
mostly widespread. 

The NNARX network creates a nonlinear model using its 
inputs. The applied regression machine complies with the 
following relation: 

𝑦est(𝑡) = 𝑓[𝑥(𝑡 − 1), 𝑥(𝑡 − 2), . . . , 𝑥(𝑡 − 𝑛𝑖),
𝑦req(𝑡 − 1), . . . , 𝑦req(𝑡 − 𝑛ro)] 

(1) 

where yest(t) is the network output at the tth time instant; x(t-1) is 
the used input of the network at t-1st time instant; yreq(t-1) is the 
required output from the network at t-1st time instant; ni is the 
size of used tapped delay line of the inputs; and nro is the size of 
used tapped delay line of the required outputs. Figure 7 shows 
the typical structure of the NNARX neural network. 

The NNOE network creates a nonlinear model using its 
earlier outputs as inputs. The applied regression machine 
complies with the following relation: 

𝑦est(𝑡) = 𝑓[𝑥(𝑡 − 1), 𝑥(𝑡 − 2), . . . , 𝑥(𝑡 − 𝑛𝑖),
𝑦est(𝑡 − 1), . . . , 𝑦est(𝑡 − 𝑛o)] 

(2) 

where yest(t) is the network output at the tth time instant; x(t-1) is 
the used input of the network at t-1st time instant; yest(t-1) is the 
network output at the t-1th time instant; ni is the size of used 
tapped delay line of the inputs; and no is the size of used tapped 
delay line of the outputs. Figure 8 shows the typical structure of 
the NNOE neural network. 

During the model selection, size of the regressor and the 
number of hidden neurons in hidden layers were changed. Based 
on the previous practical experience, the number of regressors 
was 1 or 2, while the number of hidden neurons was between 10 

 

Figure 5. Control and Chemical Dosing Equipment. 

 

Figure 6. P&I diagram of the control and chemical dosing equipment. 

 

Figure 7. Typical structure of the NNARX [27]. 

 

Figure 8. Typical structure of the NNOE. 
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and 12. The selected raw data has been pre-processed using the 
SciLab software. According to [28], pre-processing can consist in 
a simple transformation or a complex operation. The raw data 
were first filtered by a low-pass filter, then normalised. When 
normalising the input data, the minimum and maximum values 
of each component are selected to cover the set of values and the 
interpretation range of the neural networks. This interval is 
typically [0; 1] and [-1; 1]. In the presented case, the [0; 1] interval 
was selected for normalisation. 

Three datasets were generated for the detection systems. The 
training set was needed to configure weights of the network. One 
of the most important parameters during the training process is 
the stopping criterion. If the training process stops too early, the 
network is not able to learn the data and gives poor estimation 
when an unknown dataset is used. To optimise the network the 
validation set is used. When Mean Squared Error (MSE) is the 
lowest, it is best to stop the training process of the network. The 
Mean Squared Error complies with the following relation: 

𝑀𝑆𝐸 =
1

𝑛
∑[𝑦req(𝑖) − 𝑦est(𝑖)]

2

𝑖

 (3) 

The third, test dataset is independent from the training and 
validation sets. It is used to compare results for different 
networks. 

Neural networks were trained using the generated datasets. 
To avoid overfitting, the training process was stopped at the 
minimum MSE value. The Levenberg-Marquard algorithm was 
used to optimise the ANN in Matlab. Figure 9 shows the 
workflow of model. 

3.4. Single Inputs Neural Network Based Detection 

Large number of measurements was performed with the 
previously detailed hydrate forming test equipment using 
different inhibitor materials and gases from Szeghalom gas well. 

From this huge database 50 pieces were selected and used for the 
investigation. During measurements mainly values of differential 
pressure, inlet pressure and temperature of gas were saved for 
later investigation.  

Differential pressure measurement value from PT2 or PT3 
sensor was used as an input in the first method, depending on 
which section of the pipe the hydrate was formed in. 

After the appearance of gas hydrate molecules in gas flow the 
pressure in pipe section was increasing because the agglomerated 
hydrate reduces the cross-section area of the pipeline. Therefore, 
fast gas hydrates detection is very important. 

From practical perspective, the differential pressure gives the 
most valuable information about the processes in the tube. Thus, 
this parameter was used as the input value of the alarm system. 

As previously stated, three independent datasets have been 
created. In Table 1. the number of performed measurements and 
the number of datapoints included in the different datasets are 
shown. The scaled, normalised differential pressure value was 
used in datasets as input. 

The required output was an artificially generated alarm signal, 
which was created from the differential pressure values. The 
signal corresponds to the 75 percent of the maximum value, see 
Figure 10. 

Until the actual differential pressure value is under the limit, 
the alarm signal is also zero. When it reaches the limit, the signal 
changes to one. 

The single input NNARX network is seen in Figure 11 with 
the used regressor and the mapping function. Here, y(t) is the 
network output at the tth time instant; yreq(t-1) is the required 
output from the network at t-1st time instant; x(t) is the network 
inputs at the tth time instant; x(t-1) is the network input at t-1st 
time instant; TDL is the tapped delay line, b is neuron bias, W is 
the weight matrix. 

The single input NNOE network is seen in Figure 12, with 
the used regressor and the mapping function.  

In Figure 12, y(t) is the network output at the tth time instant; 
yreq(t-1) is the output from the network at t-1st time instant; x(t) 

Table 1. Main Parameters of the datasets. 

Dataset 
Number of performed 

measurements  
Number of  
data points  

Training dataset 26 2576 

Validation dataset 10 1077 

Test dataset 10 1698 

 

Figure 9. The workflow of model development [29]. 

 

Figure 10. Alarm signal (75%). 

 

Figure 11. Single Neural Network ARX. 
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is the network inputs at the tth time instant; x(t-1) is the network 
input at t-1st time instant; TDL is the tapped delay line, b is 
neuron bias, W is the weight matrix. 

3.5. Multi Input Neural Network Based Detection 

The previously detailed control and chemical injection system 
has been operated in test mode for 29 weeks under continuous 
monitoring. Several parameters were monitored, but only three 
of them (well pipe pressure, well pipe temperature, quantity of 
inhibitor – inverter frequency) influenced the formation of 
hydration. Pressure measurement value from PT12 sensor, 
Temperature measurement value from TT12 sensor, and 
Quantity measurement value of inhibitor from inverter 
frequency of the dosing pump were used as inputs in the second 
method. The fourth parameter is the type of the applied 
inhibitor, which was recorded when the inhibitor was placed in 
the container. Demonstration of the effectiveness of each 
chemical in inhibiting hydration was performed with the 
previously described equipment. Depending on the inhibition 
ability of the inhibitors, they were graded on a scale, see Table 2. 

As previously mentioned, three independent datasets have 
been created: training, validation and test datasets. The main 
parameters of datasets are shown in the Table 3. 

The neural network has four inputs and one output, the four 
inputs are the four parameters listed above, and the output is an 
alarm signal. The multi-input NNARX network is seen in Figure 
13, with the used regressor and the mapping function.  

In Figure 13, y(t) is the network output at the tth time instant; 
yreq(t-1) is the required output from the network at t-1st time 
instant; x1..4(t) is the network inputs at the tth time instant; x1..4(t-

1) is the network input at t-1st time instant; TDL is the tapped 
delay line, b is neuron bias, W is the weight matrix. 

4. RESULTS AND DISCUSSIONS 

Performance of the network is adequate if the required output 
(blue graph in Figure 14) and the regular output (red graph in 
Figure 14) match each other.  

MSE gives no satisfactory information about the 
performance, therefore, the number of edges in the sample sets 
were determined by rising edge (RE) method and then they were 
compared. If the edges matched each other it can be said that the 
alarm was at the proper time moment. A percentage value can be 
calculated (RE%) from the ratio of number of alarms occurred 
at proper time and number of total alarms [30]. 

There are several methods, which can be used to find edges 
in one dimension. In this research the Canny edge detection 
method resulted the best calculation, in which the first Gaussian 
derivative is used to approximate the optimal finite length filter 
[31]. 

Results of both networks were compared, using the relative 
error of detected rising edges in the simulated output of the 
network and the required alarm signal. The comparison of the 
Single Input Single Output (SISO) networks is summarised in 
Table 4. 

The table shows that the network detected possible hydrate 
formation with more than 90% efficiency in both cases. The best 
performance in case of NNARX was provided by the smallest 

 

Figure 12. Single Neural Network OE. 

Table 2. Inhibitor efficiency. 

Hydrate formation 
time in s 

Grade Numerical grade 

0-2500 won’t inhibit 1 

2501-4000 weakly inhibits 2 

4001-5500 inhibits 3 

5501-6500 strongly inhibits 4 

 

Table 3. Main Parameters of the datasets. 

Dataset 
Number of performed 

measurements 
Number of data 

points 

Training dataset 22 2178 

Validation dataset 12 1068 

Test dataset 10 1080 

 

Figure 13. Multi Neural Network. 

 

Figure 14. Output match using test set.  
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network and in case of NNOE the result was the same. It should 
be noted that NNARX performed better result than NNOE. 

The comparison of the Multi Input Single Output (MISO) 
networks can be found in Table 5. It shows that the network 
recognised the possible hydrate formation with more than 92% 
efficiency. Table 6 shows the most important parameters of the 
highlighted and best performing networks. 

5. CONCLUSIONS 

There is no publication so far in scientific literature, which 
gives solution for hydrate formation prediction for industry 
exclusively from either the differential pressure or the inhibitor's 
quality and injected quantity. 

The most effective results of the two presented projects are 
shown in Tables 4 and 5 in bold.  

For Single Input Single Output neural network, the smallest 
network provided the highest reliability in edge detection in case 
of NNARX and in case of NNOE. It should be noted that 
NNOE network performed better than NNARX. 

In case of Multi Input Single Output neural network a larger 
regressor was the best. 

The NNARX model has a predictor without real feedback. 
The NNOE model has feedback through the choice of 
regressors, which in the neural network terminology means that 
the networks become recurrent: future network inputs will 
depend on present and past network outputs. This might lead to 
instability in certain areas of the network's operating range and it 
can be very difficult to determine whether or not the predictor is 
stable [32]. 

Both NNARX networks performed well, the difference 
between the two results is not significant. However, in the first 
solution, NNOE became more effective than NNARX. In light 
of the above, the way forward is to first use the NNOE network 
for Multi Input Single Output system as well. 

Although the NNOE clearly performed better in the first 
case, but further studies are needed to assess which of the two 
methods is better. 
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network 
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network 

Num. of hidden 
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MSE 
Rel. error of 

found RE in % 
MSE 

Rel. error of 
found RE in % 

MSE 
Rel. error of 

found RE in % 

NNARX 
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