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Abstract – In the production process of natural gas one 

of the major problems is the formation of hydrate 

crystals creating hydrate plugs in the pipeline. The 

hydrate plugs increase production losses, because the 

removal of the plugs is a high cost, time consuming 

procedure. One of the solutions used to prevent hydrate 

formation is the injection of modern compositions to 

the gas flow, helping to dehydrate the gas. 

Dehydratation obviously means that the size of hydrate 

crystals does not increase. The substances used in low 

concentrations, have to be locally injected at the gas 

well sites. Inhibitor dosing depends on the amount of 

gas hydrate present. In the article two Artificial Neural 

Network (ANN)-based predictive detection solutions 

are presented. In both cases the goal is to predict 

hydrate formation. Data used come from two solutions. 

In the first one  measurements were performed by a 

self-developed and -produced equipment (in this case, 

differential pressure was used as input). In the second 

solution data are used from the measurement system of 

a motorised chemical-injector device (pressure, 

temperature, quantity and type of inhibitor were used 

as inputs). Both systems are presented in the article. 

 

Keywords – Gas hydrate, Neural network, Hydrate 

detection, Injection System, Modelling Equipment. 

 

 I. INTRODUCTION 

Natural gas hydrates are crystalline solids composed of 
water (host) and gas (guest). The guest molecules are 
trapped inside ice cavities, which are composed of 
hydrogen-bonded water molecules. Typical natural gas 
molecules include methane, ethane, propane and carbon 
dioxide. Hydrate particles can form ice-like hydrate-plugs 
that completely block the pipeline and can be up to several 
meters long. The number of hydrate molecules can 
increase to a level where the molecular agglomeration 
process begins, which can cause of plug formation in a 
given section of the pipeline. In worst cases the hydrate 
plugs result production outages [1, 2]. 

In the mid-1930s Hammerschmidt found out that 
natural gas hydrates can block gas transmission, especially 
at low temperatures. This discovery was pivotal and 
shortly thereafter led to the regulation of the water content 
in natural gas pipelines. The detection of hydrates in 

pipelines is a milestone marking the importance of 
hydrates to industry [3]. 

Gas wells are the cores of developing serious hydrate 
problems, because of the water content of the production. 
The cold zones of the ground can shift the temperature of 
the pipe and its contents into the hydrate-formation region. 
Hydrates start forming layers of water on the pipe walls. 
Crystallization can result in the formation of tens or 
hundreds of meters long plugs of hydrate [1, 4]. 

Multiple techniques exist to prevent the formation of 
hydrates. In the gas industry one of the most popular 
solutions is the use of thermodynamic inhibitors (THI) for 
a prolonged time. The injection of THI shifts the hydrate 
curve to a region where the conditions are not adequate for 
stable hydrate formation [2]. These compounds (methanol, 
ethylene glycol) have to be injected in high volume to the 
gas to be effective against hydrate formation. This is not a 
modern solution, because it has several disadvantages like 
cost of additional pipelines necessary to lead to the gas 
wells [5], the cost of methanol regeneration, which also 
contaminates the environment.  

One of the newer alternatives is the injection of low-
dosage hydrate inhibitors such as kinetic hydrate inhibitors 
(KHI) which can prevent the growth of hydrate molecules 
[6]. Antiagglomerants (AA) also belong to this group, they 
allow for the formation of gas hydrates but keep the 
hydrate crystals small and dispersed [7]. These modern, 
low-dosage inhibitors enable the usage of locally installed 
injection systems in the field, at the site of gas wells [8]. 

As can be seen, hydrate detection is key to 
administering the appropriate amount of inhibitor. 

 A. Objective and Methodology 

The paper compares two approaches. In the first one, 
the formation of gas hydrate was studied in laboratory 
conditions. The gas hydrate formation can be determined 
from the pressure curve. Using the measurement results, a 
single ANN-based solution was created where the input is 
the differential pressure. In the second project, test 
measurements were performed with a field hydrate dosing 
and monitoring system. Using the measurement results, a 
multi-input ANN-based solution was developed, where the 
inputs are pressure, temperature, quantity and quality of 

inhibitor as these also influence hydrate formation. 
In the first method measurements were performed by a 

self-developed and produced equipment. Modelling the 
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equipment is suitable for the simulation of the gas flow in 
the pipeline. Its conditions are as follows: temperature is 
in the range of -20…+30 °C, and typical gas pipeline 
pressure is in 1-10 nl/min flow rate range. During the 
measurements different inhibitor materials and gases from 
all over Hungary were used, and the values of differential 

pressure, inlet pressure, the gas temperature and the flow 

rate of the pipeline were recorded, but only differential 
pressure was used to teach neural networks.  

In the second approach data are used from the 
measurement system of a motorised chemicals-injector 
device, placed in the area of a well. This model was 
installed to test the equipment at the site of the SCADA 
Ltd, near Hajdúszoboszló in Hungary. The following 
parameters were monitored there: well siphon pressure, 
drill pipe pressure, injection pipe pressure, well pipe 
pressure, well pipe temperature, soil temperature, 
temperature of chemicals, controller temperature, inverter 
temperature, chemical tank liquid level, inverter current, 
voltage and frequency. Only well pipe pressure (pressure), 

well pipe temperature (temperature) and inverter 

frequency (quantity of inhibitor) were used to teach neural 
networks. 

After the successful test of the technology model, the 
equipment was transported to a real gas well in Szeghalom 
(Hungary). In the research data generated through 29 test 
weeks were used. The gas well was monitored online (one 
sample per minute) in the 29-week testing period, during 
which several hydrate plugs formed due to the weather 
conditions. 

The most important parameters of both approaches 
(equipment, inputs, outputs, ANN) are in Figure 1 and 2. 

 
Fig. 1. The two compared project – first approach 

The goal was to develop an accurate, stable and reliable 
ANN-based structure. Several architectures have been 
studied. Finally, the Neural Network Auto-Regressive X 
(NNARX) model with exogenous input is presented. [9].  

Several independent data sets were needed for training 
networks. Previously selected raw data were scaled and 
normalized. The resulting data were used to generate three 
training, validation and test datasets for the networks   

 

 
Fig. 2. The two compared project – second approach 

 B. Results 

Final versions of ANN-based predictive detection 
solutions were selected after the extended comparison 
processes. For both approaches NNARX was used. In both 
cases several networks were trained using different 
datasets. For the first neural network based predictive 
detection solution twelve, while for the second five 
networks were compared and the best one is selected. In 
both cases a relatively small and simple networks resulted 
the best performance. Finally, two predictive solutions 
were compared. 

 II. RELATED RESULTS IN THE LITERATURE 

Even though the injection of methanol into natural gas 
is not advised due to environmental concerns, such 
experiments can be found in the scientific literature. For 
example, in [10] French and English researchers reported 
that methanol was injected into the pipeline, in an 
environmentally not-so-friendly manner to prevent the 
formation of hydrates for gas extraction in the North Sea. 
The Karl Fischer method was used for injection. It is not 
the most appropriate approach, because it doesn't take salt 
content into account. As a result, new method was 
developed, by which the electrical conductivity and the 
sound propagation velocity can be measured in addition to 
the temperature and the pressure. Using these four 
parameters and the devised method, the methanol injection 
can be kept at an optimum. The paper published in 2013 in 
[11] also deals with optimising the methanol injection for 
the inhibition of hydrate formation in industrial processes. 
Authors stress the importance of the vapour state 
methanol, because it doesn't participate in the hydrate 
formation inhibition. To determine the quantity of 
inhibitor, two methods were introduced. The first one is a 
mathematical correlation from real data sets, the second 
one is based on ANN. 

The problem of the accurate assessment of hydrate 
formation is discussed in [12]. Authors use the Katz gas-
gravity method with the Ghiasi correlation [13]. The same 
model was used with the imperialist competitive algorithm 
[14]. The ANN was used to determine a kinetic model for 
the prediction of methane gas hydrate formation. The 
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authors tried to determine the correct number of hidden 
neurons and layers. The ANN-based model takes the 
temperature and pressure as the inputs and the output is the 
hydrate growth speed. In [15] comparison was made 
between two methods for the inhibition of gas hydrate 
development. Both use ANN, in the second it is optimised 
with the imperialist competitive algorithm [16]. The 
outcome met expectations and proved that the normal 
neural network provides better results than the optimised 
one [16], [17]. 

 III. DESCRIPTION OF THE PROPOSED METHOD 

In this section, two systems providing the measurement 
data are presented. Also, predictive hydrate detection 
methods are introduced. 

 A. Hydrate Forming Test Equipment 

In the first analysis measurements have been 
performed by a hydrate forming test machine developed 
for MOL plc. by the Department of Research 
Instrumentation and Informatics at the Research Institute 
of Applied Earth Sciences. Development of the control 
system was carried out by the author. (Fig. 3). 

 
Fig. 3. Hydrate Forming Test Equipment 

The modelling equipment is suitable for simulation of 
gas pipeline flow. The equipment creates field conditions 
within (-20 … 30) °C temperature range, and original gas 
pipeline pressure range, which is typically 60 bars. The 
flow rate value can be set in accordance to modelling 
principles, between 1-10 nl/min. The hydrate forms inside 
of a capillary cell which is placed in a thermostat. Fig. 4. 
shows the P&I (Piping and Instrumentation) Diagram of 
the equipment, where PT is the Pressure Transmitter, TT 
is Temperature Transmitter, FT is Flow Transmitter, GT is 
Gas Tank, PG is Pressure Gauge, TC is Temperature 
Control, TE is Temperature Element, VA is Valve, SP is 
Pressure Generator unit, DC and DR are separator cells. 

Natural gas and interfacial water from a Szeghalom gas 
well (Hungary, near to Füzesgyarmat) were used in tests. 
Different inhibitor mixtures were also added. 

 
Fig. 4. P&I Diagram 

Gas hydrate formation time was examined under gas 
well conditions (p, dp, T, Q), with or without the addition 
of different inhibitors. The following parameters were 
recorded: pressure, differential pressure, temperature and 
flow rate [18].  

 B. Control and Chemical Dosing Equipment  

The well area control and the chemical injector 
equipment was installed on the Szeghalom-29 well in 
Füzesgyarmat (Fig. 5).  

 
Fig. 5. Control and Chemical Dosing Equipment  

The injection system is optimized mainly for 
Hungarian gas wells. Thus, the temperature requirement of 
the system was in the (-40°C … 60°C) range. The system 
must be capable of working in EX (EXplosive atmosphere) 
environment with high efficiency. The power source of the 
actuator is solar energy to reach the almost zero emission 
of the system [18]. Fig. 6. shows the P&I Diagram of the 
equipment, where PT is Pressure Transmitter, TT is 
Temperature Transmitter, LT is Level Transmitter and PI 
is Pressure Indicator. 

The following parameters were recorded on a minute 
basis: well siphon pressure, drill pipe pressure, injection 
pipe pressure, well pipe pressure, well pipe temperature, 
soil temperature, temperature of chemicals, controller 
temperature, inverter temperature, chemical tank liquid 
level, inverter current, voltage and frequency [18]. The 

output of the system is the inverter frequency. The 

frequency is proportional to the amount of administered 

inhibitor. 
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Fig. 6. P&I Diagram  

 C. Neural Network  

For the identification the NNARX was used. [9]. This 
network creates a nonlinear model using its inputs. The 
applied regression machine complies with the following 
relation: 

 𝑦𝑒𝑠𝑡 = 𝑓[𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 −
𝑛𝑖), 𝑦𝑟𝑒𝑞(𝑡 − 1), … , 𝑦𝑟𝑒𝑞(𝑡 − 𝑛𝑟𝑜)] () 

where yest(t) is the network output at the tth time istant; x(t-

1) is the used input of the network at t-1st time instant; 
yreq(t-1) is the required output from the network at t-1st time 
instant; ni is the size of used tapped delay line of the inputs; 
and nro is the size of used tapped delay line of the required 
outputs.  

During the model selection, size of the regressor and 
the number of hidden neurons in hidden layers were 
changed. Based on the previous practical experience, the 
number of regressors was 1 or 2, while the number of 
hidden neurons was between 10 and 12. 

The selected raw data has been preprocessed using the 
SciLab software. According to [19], preprocessing can 
consist in a simple transformation or a complex operation. 
The raw data were first filtered by a low-pass filter, then 
normalized. When normalizing the input data, the 
minimum and maximum values of each component are 
selected to cover the set of values and the interpretation 
range of the neural networks. This interval is typically [0; 
1] and [-1; 1]. In the presented case, the [0; 1] interval was 
selected for normalization. 

Three datasets were generated for the detection 
systems. The training set was needed to configure weights 
of the network. One of the most important parameter 
during the training process is the stopping criterion. If the 
training process stops too early, the network is not able to 
learn the data and gives poor estimation when an unknown 
dataset is used. To optimize the network the validation set 
is used. When Mean Squared Error (MSE) is the lowest, it 
is best to stop the training process of the network. The 
third, test dataset is independent from the training and 
validation sets. It is used to compare results for different 
networks. 

Neural networks were trained using the generated 
datasets. To avoid overfitting, the training process was 

stopped at the minimum MSE value. The Levenberg-
Marquard algorithm was used to optimize the ANN in 
Matlab. 

 D. Single Inputs Neural Network Based Detection 

Large number of measurements was performed with 
the previously detailed hydrate forming test equipment 
using different inhibitor materials and gases from 
Szeghalom gas well. From this huge database 50 pieces 
were selected and used for the investigation. During 
measurements mainly values of differential pressure, inlet 
pressure and temperature of gas were saved for later 
investigation.  

After the appearance of gas hydrate molecules in gas 
flow the pressure in pipe section was increasing because 
the agglomerated hydrate reduces the cross section area of 
the pipeline. Therefore fast gas hydrates detection is very 
important. 

From practical perspective, the differential pressure 
gives the most valuable information about the processes in 
the tube. Thus this parameter was used as the input value 
of the alarm system.  

As previously stated, three independent datasets have 
been created. In Table 1. the number of performed 
measurements and the number of datapoints included in 
the different datasets are shown. The scaled, normalized 
differential pressure value was used in datasets as input. 

Table 1. Main Parameters of the datasets 

Dataset 
Number of 
performed 
measurements [pcs] 

Number of 
data points 
[pcs] 

Training dataset 26 2576 
Validation dataset 10 1077 
Test dataset 10 1698 

 
The required output was an artificially generated alarm 

signal, which was created from the differential pressure 
values. The signal corresponds to the 75 percent of the 
maximum value (see Fig 7.)  

 
Fig. 7. Alarm signal (75%)  

Until the actual differential pressure value is under the 
limit, the alarm signal is also zero. When it reaches the 
limit, the signal changes to one. 

The single input NARX network is seen in Fig. 8, with 
the used regressor and the mapping function. In Fig 5. y(t) 
is the network output at the tth time instant; y(t-1..2) is the 
network output at t-1st..2nd time instant; x(t) is the network 
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inputs at the tth time instant; x(t-1..2) is the network input 
at t-1st..2nd time instant; TDL is the tapped delay line, b is 
neuron bias, W is the weight matrix. 

 

 
Fig. 8. Single Neural Network  

 E. Multi Input Neural Network Based Detection 

The previously detailed control and chemical injection 
system has been operated in test mode for 29 weeks under 
continuous monitoring. Several parameters were 
monitored, but only three of them (well pipe pressure, well 
pipe temperature, quantity of inhibitor – inverter 
frequency) influenced the formation of hydration. The 
fourth parameter is the type of the applied inhibitor, which 
was recorded when the inhibitor was placed in the 
container. Demonstration of the effectiveness of each 
chemical in inhibiting hydration was performed with the 
previously described equipment. Depending on the 
inhibition ability of the inhibitors, they were graded on a 
scale of 4 to 1. 

As previously mentioned, three independent datasets 
have been created: training-, validation- and test datasets. 
The main parameters of datasets are shown in the Table 2. 

Table 2. Main Parameters of the datasets 

Dataset 
Number of 
performed 
measurements [pcs] 

Number of 
data points 
[pcs] 

Training dataset 22 2178 
Validation dataset 12 1068 
Test dataset 10 1080 

 
The neural network has four inputs and one output, the 

four inputs are the four parameters listed above, and the 
output is an alarm signal. 

 IV. RESULTS AND DISCUSSIONS 

Performance of the network is adequate if the required 
output (blue graph in Fig. 9) and the regular output (red 
graph on Fig. 9) match each other. MSE gives no 
satisfactory information about the performance, therefore, 
the number of edges in the sample sets were determined by 
rising edge (RE) method and then they were compared. If 
the edges matched each other it can be said that the alarm 

was at the proper time moment. A percentage value can be 
calculated (RE%) from the ratio of number of alarms 
occurred at proper time and number of total alarms [20]. 

 
Fig. 9. Outputs match using test set 

There are several methods, which can be used to find 
edges in one dimension. In this research the Canny edge 
detection method resulted the best calculation, in which the 
first Gaussian derivative is used to approximate the 
optimal finite length filter [21].  

Results of both networks were compared, using the 
relative error of detected rising edges in the simulated 
output of the network and the required alarm signal. The 
comparison of the single input networks is summarized in 
Table 3. 

Table 3. Results of Single Input Network 

Regressor  
Hidden 
neurons 
[pcs] 

Training  Validation  Test  

RE [%] RE [%] RE [%] 

ni = 1; 

nro = 1 

10 96.2 100.0 90.0 

12 96.0 100.0 90.0 
ni = 1; 
nro = 2 

10 73.1 70.0 70.0 
12 73.1 80.0 90.0 

ni = 2; 
nro = 2 

10 73.1 90.0 70.0 
12 69.2 50.0 60.0 

 
The table shows that the network detected possible 

hydrate formation with more than 90% results. The best 
performance was provided by the smallest network. The 
comparison of the multi input networks can be found in 
Table 4. The table shows that the network recognized the 
possible hydrate formation with more than 92% results. 

Table 4. Results of Multi Input Network 

Regressor  H.neuron
s [pcs] 

Training  Validation  Test  
RE [%] RE [%] RE [%] 

ni = 1; 
nro = 1 

10 72.2 80.0 90.0 
12 95.2 90.0 90.0 

ni = 1; 

nro = 2 

10 99.8 100.0 92.2 

12 95.2 100.0 91.2 
ni = 2; 
nro = 2 

10 82.4 91.4 81.2 
12 81.2 90.7 80.2 

 V. CONCLUSIONS  

There is no publication so far in scientific literature, 
which gives solution for hydrate formation prediction for 
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industry exclusively from either the differential pressure or 
the inhibitor's quality and injected quantity.  

The most effective results of the two presented projects 
are shown in Tables 3 and 4 in bold. For single input neural 
network, the smallest network provided the highest 
reliability in edge detection. In case of multi input neural 
network a larger regressor was the best. Both networks 
performed well, difference between the two results is not 
significant. Further studies are needed to assess which of 
the two methods is better. 
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