
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

VR and Depth Camera based Human-Robot

Collision Predictor System with 3-Finger Gripper

Assisted Assembly Device

 Imre Paniti

SZTAKI, Centre of

Excellence in Production

Informatics and Control;

Széchenyi István Egyetem,

Járműípari Kutatóközpont

Budapest; Győr, Hungary

imre.paniti@sztaki.hu

János Nacsa

SZTAKI, Centre of

Excellence in Production

Informatics and Control;

Széchenyi István Egyetem,

Járműípari Kutatóközpont

Budapest; Győr, Hungary

nacsa.janos@sztaki.hu

Péter Kovács

SZTAKI, Centre of

Excellence in Production

Informatics and Control

Budapest, Hungary
peter.kovacs@sztaki.hu

Dávid Szűr

SZTAKI, Centre of

Excellence in Production

Informatics and Control

Budapest, Hungary

david.szur@sztaki.hu

Abstract—It is known that Human-Robot Collaboration

(HRC) performance is improved in some assembly tasks when a

robot emulates the effective coordination behaviors observed in

human teams, but a close interaction could cause collisions which

should be avoided. There are several methods that can be used to

communicate the intension of the robot. However, these are

mainly acoustic or visual signals. In this paper a Virtual Reality

and Depth Camera based System is presented where vibration

signals are used to alert the user of a probable collision with a 2-

Finger gripper equipped Robot. Experimental tests are

investigated in an assembly task with - another 3-Finger - gripper

which functions as a Flexible Assembly Device.

Keywords—Collaborative Robot, Human-Robot

Collaboration, Virtual Reality, Collision Prediction

I. INTRODUCTION

According to the Digital Economy and Society Index
Report 2019 by the European Commission [1], the share of
large enterprises that use industrial or service robots is four
times higher than the share of SMEs and the use of robots
varies strongly according to company size.

One of the recurring questions in a semi-robotized industry
is: how to make a production more efficient?

Based on a study in [2] a robot could reduce the human's
idle time by 85% in an assembly operation. So applying
collaborative robots (cobots) in a factory for assembly tasks
could lead to a more efficient work. This statement should also
be valid for the assembly of varying products or product
families, which require a set of different fixtures,
reconfigurable fixtures like the Parallel Kinematic Machine-
based ones in [3] or a fixed, but flexible gripper presented in
this article.

However, the problem is that despite well described task
sequences the changeover from one product to another in a
collaborative operation could lead to human failures and
consequently to collisions with the cobot.

By definition a cobot has to operate with safety
installations (protective stop execution by reaching a certain
force in a collision), according to ISO/TS 15066:2016, ISO
10218‑1 and ISO 10218‑2, but these protective stops could
cause a significant cumulative delay in the production.

Review articles like the work of Hentout et al. [4] and
Zacharaki et al. [5] presenting solutions for pre-collision
approaches in the frame of Human-Robot Interaction (HRI).
Both surveys mention the work of Carlos Morato et al. [6] who
created a framework with multiple Kinects to generate a 3D

model with bounding spheres of human’s movements in real-
time. The proposed framework calculates human-robot
interference in a 3D space with a physics-based simulation
engine, but the pre-collision strategy for safe Human-Robot
Collaboration (HRC) is manifested in the complete stop of the
robot. This is indeed a safe protocol, reduces the production
break time, but does not eliminate it fully.

The aim of this paper is to underline the importance of a
new pre-collision strategy, especially when
flexible/reconfigurable fixtures are used.

II. EXPERIMENTAL ENVIRONMENT

Most often, robots are moved on predefined trajectories
that are fixed in the robot’s program and a new task typically
involves starting a new robot program. Another way is to
move the high level robot control out of the robot into a
computer and the robot gets continuously via a stream the
required moving and other actions. In this case, the robot runs
a general-purpose program or framework that interprets and
executes the instructions received from outside. In this
scenario this framework is called URSZTAKI and was
developed earlier in the Institute. URSZTAKI has three kinds
of instructions: (a) basic instructions of the robot's
programming language, (b) instructions of the robot add-ons
(e.g. gripper, force sensor) integrated into the robot language
by the vendors of the accessories, and (c) frequently used more
complex task instructions (e.g. putting down an object when it
is unknown how far the table is). The third type of instructions
are the real features of URSZTAKI.

It should be mentioned that the expansion of the UR
robot's functions and language is possible with the help of so-
called URCAPs and currently URSZTAKI can also be
installed as an URCAP (which is a platform where users,
distributors and integrators can present accessories that run
successfully in UR robot applications [7]).

The experimental setup is a UR10 robot with a force
sensor and a 2-Finger gripper. The environment was designed
to support different assembly tasks either fully robotized or
collaborative. To mount partly or even fully different
components universal mounting technology was required
instead of special fixtures. Another gripper is used - a 3-Finger
one - that allows a wide variety of fixings. All three fingers
can be moved independently of the selected adaptive gripper
that is fixed on the robot work table.

The 3-Finger gripper from RobotiQ [8] has 4 different
modes to its fingers (see Fig. 1).

Fig. 1. Four different modes of the 3-Finger RobotiQ gripper [8].

In the “pinch” mode on the top left side of Fig. 1, the
gripper acts as a 2-Finger one because it fingers “B” and “C”
on the same side move close together. The next mode is
“Scissor” when exactly this closing-opening ability is used on
picking up an object. In the third “wide” mode, the “B” and
“C” fingers are fan-like and they provide a wide grip for
longer objects. In the case of the leftmost “normal” grip, the
three fingers are moving in parallel and, depending on the
relative position of the object, fingertips also turn on it.

From the software point of view both grippers can be
directly programmed from the robot's program code. Because
both grippers are from the same manufacturer, the commands
of one of the grippers had to be modified to avoid conflict
between the individual instructions.

A typical scenario is that the robotic arm is lifting a part to
the fixed gripper which grabs it, and after that another part is
placed or pressed by the robotic arm on the part fixed by the
immobile gripper. There are some tasks, like the insertion of a
spring in a housing, which have to be done by the human
operator (see Fig. 2).

Fig. 2. Illustration of a manual spring insertion.

In the environment it is also possible that the robot holds a
screwdriver and fastens the assembled parts with screws (see
Fig. 3 and Fig. 4).

Fig. 3. Illustration of the robotised screwdriving of a Push-Button element.

Fig. 4. Illustration of the robotised screwdriving of a Ball Valve element.

The proposed solution with the immobile 3-Finger gripper
satisfies the requirements of a flexible fixture for certain parts.
Human-robot collision problems might occur in this case
when the human operator forgets the predefined assembly task
sequence for a new product, grasps for an assembly part and
the trajectory of his hand intersects the trajectory of the robot.

III. PRE-COLLISION APPROACH AS A PREDICTOR

In order to avoid collisions with the robot, either the robot
trajectory has to be modified in real-time (which might cause
additional production time) or the human operator has to be
warned with a pre-defined understandable signal so he/she can
modify his/her movement in time. The warning signal could
be a visual, an acoustical or a tactile signal. In this paper the
latter has been developed as a part of a PREdictor of HUman-
RObot COllision (PREHUROCO) framework. The subject of
the prediction in this case are the predetermined movements
of the robot which will occur after a certain time. So a similar
framework had to be created as described in [6], but instead of
a digital twin of the robot (real-time 3D visualization of the
robot) a pre-played robot model motion was used.

A. Requirement analysis

The requirement analysis of the PREHUROCO system
showed that the following features are desired on the
candidate software library:

1) Fully open-source: The system must comply with all
security requirements in a real manufacturing system,
therefore full control over source code is mandatory.

2) Modular: The system should be divided into various
software components so the candidate software
library must support responsibility encapsulation.

3) Distributed: In a manufacturing system, many
computers and IoT devices are connected together,
therefore the PREHUROCO software components
must have the ability to run on different computers or
IoT devices.

4) Cross-platform: As a distributed requirement shows
many computers and devices are connected together
with various operating systems, therefore the
candidate framework should be cross-platform.

5) Programming Language Variability: As distributed
and cross-platform requirements showed the
variability of the devices and computer operating
system in manufacturing scenarios are high therefore
the candidate software library should support
different Application Programming Protocols (APIs).

6) Scalability: PREHUROCO software components
should be developed independently of whether they
run on the same computer or not. In terms of
performance, the software components can be easily
put together into one machine, into one application or
can be distributed.

7) Rapid prototyping: The candidate framework should
provide examples or even pre-made components that
can be improved during the implementation of
PEHUROCO because the proposed system should
deal with:

 Rigid-body simulation.

 Visualization, even VR or AR.

 Real-time 3D scanning.

 X3D model format.

 Various communication protocols via

Intranet/Internet.

The comparison of the candidate frameworks considering
the requirements is summarized in Table 1.

TABLE I. COMPARISON OF DIFFERENT FRAMEWORKS

CONSIDERONG THE REQUIREMENTS OF PREHUROCO

Requirement Unity Engine Unreal Engine ApertusVR

Open source Partially Yes Yes

Modular Yes Yes Yes

Distributed Partially Corner Case Yes

Cross-

platform
Yes Partially Partially

Prog. Lang.

Variability
Partially Corner Case Yes

Scalability Partially Partially Yes

Rapid

Prototyping
Yes Yes Yes

Based on the requirement analysis of PREHUROCO the
ApertusVR software library [9] was chosen for implementing
the system.

ApertusVR is a software and hardware vendor-free open-
source software library. It offers a no-vendor-lock-in approach
for integrating Virtual Reality technologies into industrial
software systems. By the help of the AprtusVR software
library, a distributed software ecosystem can be created via
Intranet/Internet. Basically, it can be divided into two major
parts, Core and Plugins. The Core system is responsible for
the Internet/Intranet communication among the participants of
the distributed software ecosystem and synchronizes the
information between them during the session. The plugin
mechanism makes the possibility to extend the capability of
any solution which is created by the ApertusVR library.
Plugins can access and manipulate the information within the
core system.

B. Explanation of the PREHUROCO system

The system is distributed to five major responsibilities:

1) 3D scanning of the human operator.

2) Streaming the joint angles of the robot.

3) Collision Detection between the human and the

robot.

4) Alert human for the possible collision.

5) Visualize the whole scenario.

These responsibilities were implemented by the help of

the ApertusVR library and each was encapsulated into six
plugins [10]: 1: Collision Detection Plugin, 2: Visualization
Plugin, 3: Kinect Plugin, 4: WebSocket Server Plugin, 5:
X3D Loader Plugin, 6: NodeJS Plugin

The 7th element is a WebSocket Client, which is
implemented in the form of a HTML site with jQuery
JavaScript library and Vibration API call [11] for mobile
phones, but for more convenient use the WebSocket Client
could run also on a Smart Watch.

Fig. 5 shows the realized system with the connections and applied protocols in an experimental set-up with an UR5 robot.

Fig. 5. System elements and connections of PREHUROCO with the applied protocols.

Collision Detection Plugin [12]: This Plugin was created
based on the pre-made "bulletPhysics" Plugin of ApertusVR.
Previously this plugin was able to run rigid body simulation
but collision events were not raised during the simulation.
The rigid body abstraction of ApertusVR was extended by the
functionality of collision events.

Visualization Plugin [13]: This Plugin used as-is from the
repository of ApertusVR for visualization purposes.

Kinect Plugin [14]: This Plugin was created based on the
pre-made "Kinect" Plugin of ApertusVR. Previously this
plugin was able to create the skeleton of the tracked human
or even its point cloud but rigid bodies were not created. For
collision detection, rigid bodies are mandatory therefore rigid
bodies were created based on the geometries of the human
skeletons.

WebSocket Server Plugin [15]: This Plugin was created
based on the pre-made "webSocketServer" Plugin of
ApertusVR. Previously this plugin was able to forward all
events which are raised in the Core. For collision detection,
only the collision event of the rigid bodies is necessary.
During the implementation of that plugin, a filter feature was
added to forward only the desired event into the WebSocket
connection.

X3D Loader Plugin [16]: This Plugin was created based
on the pre-made "X3DLoader" Plugin of ApertusVR.
Previously this plugin was able to parse x3d format and create
only the geometries of the robot. For the collision detection,

rigid bodies are mandatory therefore rigid bodies were
created based on the parsed geometries.

NodeJS Plugin [17]: This Plugin used as-is from the
repository of ApertusVR. This plugin allows to run a web
server for receiving the joint angle of the UR5 robot via
HTTP requests.

In the PREHUROCO system, these Plugins are
encapsulated into different applications. These different
applications can be run on different computers to distribute
the computational power and achieve real-time collision
prediction. As the diagram shows these applications
communicate over Internet/Intranet communication via
different protocols.

The collision detection application has to be run on a High
Performance Computing (HPC) server to process the virtual
collisions in real-time.

The Kinect application can run on a dedicated computer
of the Kinect device or on the same computer which
calculates the virtual collisions.

The X3DLoader Plugin and the NodeJS Plugins are
integrated into one application and can run in the dedicated
computer of the UR5 Robot.

The WebSocket Server application can also be run on a
different computer to ensure security and locality
requirements.

The joint positions are stored in a jsonlist file which is
generated by executing the whole robot program. During the
execution the joint positions are “grabbed” and saved with a
given frequency.

The speed of the simulation is equal to the speed of the
robot movement and the "forecast" can be determined with
the delay between the simulation starting time and the real
robot execution start time.

IV. RESULTS

The proposed Framework has been tested on two local
network topologies.

In case the calculations had been divided into a cloud
service based computer (with 4 Virtual CPUs, 8GB RAM
running a Windows 10 Operating System) and a HPC Server
(Ideum with Intel i7-8700, RTX 2080 8GB GDDR6 NVIDIA
graphics card, Dual 250GB NVMe M.2 SSD, 32GB
2400MHz DDR4 RAM running a Windows 10 Operating
System) the collision events were delivered to the WebSocket
Client with significant delay.

By running all ApertusVR Plugins on the Ideum and
sending only the collision events via Wireless LAN
Connection (2.4Ghz WiFi) the user experience was quasi real-
time.

Fig. 6 shows a virtual collision test running on the Ideum
(HPC Server) with the skeleton model of the operator (1),
virtual UR5 robot movement simulation (2), real robot (3),
Kinect Sensor (4), and a Mobile Phone (5) with Android
Operating System, running the WebSocket Client to vibrate
the device. The 3D Scene is visualized with a top camera view,
but arbitrary camera views are possible.

Fig. 6. Virtual collision test.

The Kinect Plugin creates a simplified skeleton model
from the human operator which needs improvement. An
anthropomorphic skeleton model or voxelisation could be a
solution in the future.

It has to be underlined that the communication time increased
by the human reaction time should not exceed the ΔT time
between the pre-played simulated motion and the actual
motion of the robot.

V. CONCLUSION

In this paper a commercially available gripper as a
flexible fixture for assembly and a new pre-collision
approach as a predictor for Human-Robot Collaboration were
presented. The proposed Framework had been realized with
the help of a modular, distributed, open-source cross-

platform (ApertusVR) with different programming API
support and scalability solution.

Seven interconnected system modules have been
developed with the goal to monitor the movement of the
human operator in 3D space, calculate collisions with a
virtual robot, which movements are pre-played compared to
the movement of the real robot and alert the human operator
before a real collision can happen. Successful virtual collision
tests showed that the operator receives the warning signal
immediately in the form of a mobile device vibration to
modify the planned movement.

In some cases real-time path planning is required in a
changing environment, e.g. when the position of the
workpiece to be gripped is variable (e.g. bin picking). In a
collaborative environment, this is a serious security challenge
that the whole system has to manage. The static parts of the
environment can be checked time by time with collision
detection but the presence of the human means that the
"simple" collision detection is not enough. This was the main
reason for the current research and development presented in
this paper.

ACKNOWLEDGMENT

This research has been supported by the „Felsőoktatási
Intézményi Kiválósági Program – Digitális ipari
technológiák kutatása a Széchenyi István Egyetemen" project
(20523-3/2018/FEKUTSTRAT) and by the GINOP-2.3.2-
15-2016-00002 grant on an "Industry 4.0 research and
innovation center of excellence".

REFERENCES

[1] Digital Economy and Society Index Report 2019, Integration of Digital
Technology,
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=59979.
Accessed 10 Aug. 2020.

[2] Shah, J., Wiken, J., Williams, B., & Breazeal, C. (2011, March).
“Improved human-robot team performance using chaski, a human-
inspired plan execution system”. In Proceedings of the 6th international
conference on Human-robot interaction, pp. 29-36.

[3] Gaspar, T., Ridge, B., Bevec, R., Bem, M., Kovač, I., Ude, A., & Gosar,
Ž. (2017, July). “Rapid hardware and software reconfiguration in a
robotic workcell”. In 2017 18th International conference on advanced
robotics (ICAR), IEEE, pp. 229-236.

[4] Abdelfetah Hentout, Mustapha Aouache, Abderraouf Maoudj & Isma
Akli: “Human–robot interaction in industrial collaborative robotics: a
literature review of the decade 2008–2017”, Advanced Robotics,
33.15-16 (2019): 764-799.

[5] Zacharaki, A., Kostavelis, I., Gasteratos, A., & Dokas, I. (2020).
“Safety bounds in human robot interaction: a survey. Safety science”,
127, 104667.

[6] Morato, C., Kaipa, K. N., Zhao, B., and Gupta, S. K. (January 22,
2014). “Toward Safe Human Robot Collaboration by Using Multiple
Kinects Based Real-Time Human Tracking”, ASME. J. Comput. Inf.
Sci. Eng. March 2014; 14(1): 011006.

[7] URCap Software Platform of Universal Robots,
https://www.universal-robots.com/articles/ur/urcap-software-
platform/. Accessed 10 Aug. 2020.

[8] RobotiQ website, www.robotiq.com. Accessed 10 Aug. 2020.

[9] ApertusVR Documentation, GitBook, https://apertus.gitbook.io/vr/.
Accessed 10 Aug. 2020.

[10] PREHUROCO sample files on Github,
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/samples/colli
sionDetection. Accessed 10 Aug. 2020.

[11] Vibration API (Second Edition), W3C Recommendation 18 October
2016, https://www.w3.org/TR/vibration/. Accessed 10 Aug. 2020.

[12] Collision Detection Plugin, ApertusVR on Github,
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/physi
cs/bulletPhysics. Accessed 10 Aug. 2020.

https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=59979
https://www.universal-robots.com/articles/ur/urcap-software-platform/
https://www.universal-robots.com/articles/ur/urcap-software-platform/
http://www.robotiq.com/
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/samples/collisionDetection
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/samples/collisionDetection
https://www.w3.org/TR/vibration/
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/physics/bulletPhysics
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/physics/bulletPhysics

[13] Visualization Plugin, ApertusVR on Github,
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/rende
r/ogreRender. Accessed 10 Aug. 2020.

[14] Kinect Plugin, ApertusVR on Github,
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/track/
body/kinect. Accessed 10 Aug. 2020.

[15] Websocket Server Plugin, ApertusVR on Github,
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/langu
ageAPI/webSocketServer. Accessed 10 Aug. 2020.

[16] X3D Loader Plugin, ApertusVR on Github,
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/langu
ageAPI/jsAPI/nodeJsPlugin/js/plugins/x3dLoader. Accessed 10 Aug.
2020.

[17] NodeJS Plugin, ApertusVR on Github,
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/langu
ageAPI/jsAPI/nodeJsPlugin. Accessed 10 Aug. 2020.

https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/render/ogreRender
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/render/ogreRender
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/track/body/kinect
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/track/body/kinect
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/webSocketServer
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/webSocketServer
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin/js/plugins/x3dLoader
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin/js/plugins/x3dLoader
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/languageAPI/jsAPI/nodeJsPlugin

