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1. INTRODUCTION 

With an increasing number of vehicles on the roads, it is 
becoming difficult to find a free parking space. Several sensor-
based parking assistant systems have been developed in the past 
decade to make it easier to find a free parking space in busy areas, 
such as city centres and shopping malls. These systems mainly 
include sensors installed in each parking space that can detect the 
presence of a car by measuring its weight with pressure sensors; 
sensing the car body with magnetic sensors or infrared and 
ultrasonic sensors can determine if something is in the examined 
area. 

The main problem with these parking systems is the need for 
extra infrastructure and sensors. As most car parks are not 
equipped with sensors, which indicate the occupancy of the 
parking space, a vehicle must drive passed a parking space to be 
able to detect if it is free [1]. There are also Internet-of-Things 
(IoT) systems, which involve not only the signals of the sensors 
but also mobile applications [2]. These systems can navigate the 
driver to the free parking spaces in the shortest possible time. 

The main purpose of this paper is to present an installed 
sensor-free car park exploration method that navigates the 
vehicle to all the possible free parking spaces. Autonomous 
vehicles are able to detect the free parking spaces with sensors 
installed in the vehicle (e.g. LiDAR [3]). As the coverage path 
planning (CPP) problem is similar to the car park exploration 
problem, the core concepts of CPP algorithms can be used. 

This paper is organised as follows. Section 2 presents the most 
commonly used parking systems and provides examples, while 
the formulation of the car park exploration problem can be 
found in Section 3. Section 4 presents some cell decomposition 
and grid-based CPP methods and explains how they are used for 
car park exploration. An improved version of trapezoidal cell 
decomposition can also be found in this section. Different 
traversal methods are presented in Section 5, while Section 6 
introduces a cost function to grade the free parking spaces. The 
presented exploration methods are compared in Section 7, and 
the method for using them in multi-storey car parks is presented 
in Section 8. Section 9 derives the conclusions from the different 
traversals and presents possible avenues for future work. 

ABSTRACT 
With the increasing number of vehicles on the roads, finding a free parking space has become a time-consuming problem. Traditional 
car parks are not equipped with occupancy sensors, so planning a systematic traversal of a car park can ease and shorten the search. 
Since car park exploration is similar to coverage path planning (CPP) problems, the core concepts of CPP algorithms can be used. This 
paper presents a method that divides maps into smaller cells using trapezoidal cell decomposition and then plans the traversal using 
wavefront algorithm core concepts. This method can be used for multi-storey car parks by planning the traversal of each floor separately 
and then the path from one floor to the next. Several alternative explorational paths can be generated by taking different personal 
preferences into account, such as the length of the driven route and the proximity to preferred locations. The planned traversals are 
compared by step number, the cell visitedness ratio, the number of visits to each cell and the cost function. The comparison of the 
methods is based on simulation results. 
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2. PARKING ASSISTANT SYSTEMS 

The literature proposes various solutions for autonomous 
parking with sensors installed in car parks. These systems require 
a centralised parking system in which a server stores the 
occupancy of the parking spaces based on the sensor signals. 
When a vehicle requests a parking space, the server reserves one 
for the vehicle.  

CCTV systems are widely available in car parks. 
Consequently, algorithms using image processing algorithms are 
able to detect the occupancy of a parking space based on camera 
signals. For example, Athira et al. [4] present an optical character 
recognition system that detects occupied parking spaces based 
on CCTV signals. 

Another solution is the availability of IoT-enabled cities, often 
referred to as smart cities. Smart cities can provide information 
about the availability of parking spaces. If a centralised parking 
system server is available, the vehicle is able to request 
information about the occupancy of parking spaces from the 
server. Al-Turjman et al. [4] present a survey of IoT-enabled 
cities. The use-case practices are also presented, including the 
smart payment system, the parking reservation system and the e-
parking system. 

There are several commercially available solutions for smart 
parking. In Hungary, two such solutions can be found in 
Budapest. The first is Parkl [5], which is a smartphone application 
providing information about the location of car parks and 
making cashless payment possible. Parkl does not provide the 
exact location of the parking spaces but the location of parking 
zones in the city where possible parking spaces can be found. In 
comparison, Parker [6] (developed by Smart Lynx Ltd.) provides 
information about the exact occupancy of about 1,500 parking 
spaces in the city centre. This solution uses preinstalled sensors 
to indicate the occupancy of a given parking space to the driver. 
Parker also provides a cashless payment service for its users. 

The algorithm presented in this paper provides a car park 
exploration method using CPP. Car park exploration is required 
because no additional signals for preinstalled sensors in car parks 
are used. A complete system is therefore required to perform the 
car park search from the creation of the exploration path to 
detecting appropriate parking spaces and performing the parking 
manoeuvre. This system is called the autonomous parking system 
and consists of four subsystems, as the parking task can be 
broken down into four subtasks.  

The first task of the autonomous parking system is to provide 
an exploration path for the vehicle. The focus of this paper is to 
propose a solution for this subsystem by applying CPP 
algorithms. This subsystem provides multiple goal 
configurations for the vehicle. These goal configurations are 
required, as the avoidance of preinstalled sensors leads to the loss 
of the goal configuration. 

The second subsystem is a detector subsystem. The main task 
is to scan the environment and detect parking spaces for the 
vehicle while the vehicle is driving along the exploration path [3]. 
In order to be able to detect parking spaces, a sensor must be 
mounted on the vehicle. The first subsystem should consider the 
sensor parameters during the planning of the exploration path. 

When a parking space is found, the third and fourth 
subsystems plan and execute the parking manoeuvre [7], [8]. 

3. CAR PARK EXPLORATION 

The goal of car park exploration is to plan a path leading to 
all the possible free parking spaces. The binary map (Figure 2) of 

the car park (Figure 1) is known, and the parking spaces are 
treated as obstacles. While following the planned path, a sensor 
(e.g. LiDAR) searches for a suitable free parking space. 

In this formulation, C ⊂  R𝟚 defines the workspace of car 

park exploration and 𝒜 denotes the vehicle. The state of the 

vehicle is 𝑞 = [
𝑥
𝑦], where 𝒜(𝑞) ⊂ 𝐶, while [

𝑥
𝑦] denotes the 

position of the vehicle in a fixed frame (the orientation of the 
vehicle is not taken into account). The workspace consists of 

obstacles (𝐶obs ⊂ 𝐶) and free spaces (𝐶free = C  ∖ 𝐶obs), some 

of which need to be visited (𝐶vis ⊆ 𝐶free). The vehicle can move 

only in free space (∀𝑞 ∈ 𝐶free). 

The vehicle moves on a collision-free path (τ), where 𝑠𝑖 ∈ 𝑅 

is a scalar path parameter (𝑠 ∈ [0, 𝑇], 𝑇 is the length of the whole 
path): 

τ: 𝑠 ↦ 𝑞, ∀𝑠 ∈ [0, 𝑇]: τ(𝑠) ∈ 𝐶free . (1) 

𝐿(𝑞) ⊂ 𝐶 denotes the points that are inside the range (δ) of 
the sensor, which detects the free parking spaces: 

𝐿(𝑞) = { 𝑧 ∈ 𝐶free|  ‖𝑞 − 𝑧‖ ≤ 𝛿},  (2) 

where ‖𝑞 − 𝑧‖ is the Euclidean distance between points 𝑞 

and 𝑧. 
The points seen while traversing the path are 

𝐿(τ(𝑡)) = ⋃ 𝐿(τ(𝑠))

𝑠∈[0,𝑡]

. (3) 

The aim is to reach every position that should be visited 
during the exploration: 

𝐶vis ⊆ 𝐿(τ(𝑇)). (4) 

Other constraints that should be considered are as follows: 

• The start position is τ(0) = 𝑞init. 

 

Figure 1. Map of a car park. 

 

Figure 2. Binary map of a car park. 
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• Cost can be assigned to the path as 𝑤1(τ) (e.g. length 
of the path). 

• Preferred positions are provided for, which are 

considered first. The 𝑤2(𝑞) cost can be assigned to the 

𝑞 ∈ 𝐶𝑓𝑟𝑒𝑒 position (e.g. distance from the target 

position). 

• The traversal can be interrupted when a condition is 
met (parking space detected with LiDAR). 

• When stopping while driving (at some point with 𝑠1 
path parameter), the cost of the traversal is the personal 

preference weighted (𝛼) sum of 𝑤1 and 𝑤2: 𝑤1(τ) +

𝛼 𝑤2(τ(𝑠1)) (the cost of the path up to that point plus 

the cost of the position). 

• There might be constraints to the order of the 

configurations in τ path (e.g one-way streets). 

4. USING COVERAGE PATH PLANNING METHODS 

The purpose of CPP methods is to plan an obstacle-free path 
that reaches every free point of the given configuration.  

This section presents car park traversal-related computational 
problems. It also explains the idea behind using CPP algorithms 
for the traversal and provides an overview of the most 
commonly used cell decomposition and grid-based methods. 
Finally, methods chosen for implementation are presented. 

4.1. Related computational problems 

CPP is similar to the travelling salesman problem [10], in 
which the salesman has to visit all the cities via the shortest route 
possible and return to the beginning. The cities are represented 
as nodes on a graph and the routes between them are the edges. 
The travelling salesman problem is NP-hard, which means it is 
at least as hard as any NP problem, so it cannot be solved with 
polynomial-time algorithms. 

During path planning, an important factor in terms of the 
path is the exploration of the environment. Two computational 
geometric problems are related to this: the museum problem [11] 
calculates the fewest number of guards required to observe the 
whole museum, while in the watchman problem [12], only the 
map of the region is given, and the main purpose is to plan the 
shortest possible path between the obstacles so that the 
watchman can guard the entire area. 

4.2. Cell decomposition-based path planning 

There are several cell decomposition-based path planning 
methods that divide a map into cells. Exact cellular 
decomposition methods [12] divide the free space into various-
sized nonoverlapping cells. The union of the cells covers the 
whole free configuration. 

Trapezoidal cell decomposition [14] can only be used in 
polygonal environments, as it extends rays from the vertices of 
the obstacles. These rays and the edges of the obstacles form the 
cell borders, dividing a map into trapezoidal or triangular cells. 
An example of this method can be seen in Figure 3. 

Boustrophedon (Greek: ‘ox turning’) decomposition [15] 
extends rays from the entry and exit points of the obstacles, so 
fewer rays are extended than in trapezoidal cell decomposition. 
Consequently, the cells have a larger area. Figure 4 shows an 
example of this method. 

When applying Morse decomposition [12], the critical points 
of the smooth function, called the Morse function, indicate the 
boundaries of the cells (see Figure 5). 

Greedy convex polygon decomposition [18] can be used 
when there are polygonal obstacles. This method consists of two 
types of cuts:  

• a single cut: a cut from a nonconvex vertex to an 
existing edge or another cut, 

• a matching cut: cutting two nonconvex vertices. 
 
First, all the matching cuts are made on the nonconvex 

vertices, then the single cuts are made for the unmatched 
vertices. In the example in Figure 6, the matching cuts are green 
and the single cuts are red. The cell boundaries are the set of cuts 
and the edges of the obstacles. 

After dividing the map, the adjacency matrix of the cells can 
be created. Two cells are adjacent if they have a common 
boundary, and the boundary has a given number of common 
points. The purpose of cell decomposition-based methods is to 
visit every cell once, although it is not always possible. If the 
adjacency matrix of the cells is known, a traversal can be planned, 
as it is known which cell can be visited from the current one. 
After creating the traversal, a path can be planned that leads 
through the cells in a given order reaching every free point of the 
configuration. 

 

Figure 3. Example of trapezoidal cell decomposition [14].  

 

Figure 4. Example of Boustrophedon decomposition [16].  

 

Figure 5. Example of Morse decomposition [17].  



 

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 18 

4.3. Grid-based path planning 

In contrast to the cell decomposition-based methods, grid-
based methods divide the map into same-sized cells, called a grid. 
The cells are classified into two groups, those that have obstacle 
points inside the cell and those without obstacle points. 

The wavefront algorithm [9] assigns distance values to every 
cell in the map, with each neighbouring cell being assigned one 
larger distance value, starting from the initial cell, which has a 
distance value of 0. The traversal of the cells is based on distance 
values, and the neighbouring unvisited cell with the largest 
distance value is the following cell. If a number of unvisited 
neighbouring cells have the same distance value, the following 
cell is selected randomly. An example of this method can be seen 
in Figure 7. 

The spiral spanning-tree coverage method [21] builds up a 
graph with nodes that represent the centres of the obstacle-free 
cells and edges that represent the lines between the neighbouring 
cell centres. The cells are divided into four subcells, which are 
classified into two groups: those that have four unvisited subcells 
(called new cells) and those that have at least one visited subcell 
(called old cells). First, every cell is unvisited, and the algorithm 
starts from the initial cell and marks it as an old cell. The initial 
cell is the root of the spanning tree. In the subsequent steps, 
every cell neighbouring the current cell is tested if it is a new cell. 
If the cell has a neighbouring new cell, a spanning-tree edge is 
added from the current cell to the neighbouring cell, and then 
the algorithm moves to a subcell of the neighbouring cell and 
adds the centre of the neighbouring cell to the tree as a node. If 
there is a backwards move from the current cell to a subcell of 
the parent cell along the right-hand edge of the spanning tree, the 
algorithm terminates. Figure 8 provides an example of this 
method. 

 

4.4. Using coverage path planning methods for car park 
exploration 

In order to plan the traversal of a car park, the map of the car 
park should be divided into smaller regions. As most car parks 
consist of polygonal obstacles, trapezoidal cell decomposition 
can be used to divide the map. The cells can be treated as a grid, 
so wavefront algorithm core concepts can be used to plan the 
traversal of the cells. The main advantage of the wavefront 
algorithm is that it can take personal preferences into account by 
modifying the distance values of the cells. 

4.5. Rectangular cell decomposition 

As rectangular decomposition is based on trapezoidal cell 
decomposition, it can only be used in polygonal environments. 
If the map contains nonpolygonal obstacles, the bounding boxes 
of the obstacles should be taken into account when decomposing 
the map. Trapezoidal cell decomposition decomposes the map 

using only one axis (𝑥 or 𝑦), so the decomposed map may 
contain cells covering large areas. The main disadvantage of this 
method is that the traversal of the cells is not unequivocal, so a 
path should be planned inside a cell from which all of the free 
parking spaces can be seen.  

Rectangular cell decomposition decomposes the map using 

both 𝑥 and 𝑦 axes. The final cells are the intersections of the cells 
decomposed by these axes. The final cells are smaller and 
rectangular, which is the main advantage of this method; every 
cell has only one neighbouring cell in each direction. An example 
of a decomposed map can be seen in Figure 9, where the 
coloured rectangles indicate the cells. 

The adjacency matrix of the cells can be created after dividing 

the map. This matrix is an 𝑛 × 4 matrix, where 𝑛 is the number 
of cells. The rows of the matrix store the indices of the adjacent 
cells of every cell in each direction. If two cells have common 
boundaries, and the vehicle can pass from one cell to the other, 
these cells are adjacent. Cells neighbouring obstacles and cells on 
the edges of the map do not have four neighbouring cells, so the 
neighbouring obstacles and edges are considered as their 
neighbours (an implementational solution might be to store these 

false neighbours as dummy indices, e.g. −1). If there are one-way 
road sections, moving from one cell to the other is permitted, 

but moving in the opposite direction is prohibited, so the 𝑖𝑡ℎ cell 

is adjacent to the 𝑗𝑡ℎ cell but not vice versa. This means that the 

𝑖𝑡ℎ row of the adjacency matrix contains the 𝑗-cell index in the 

appropriate column, but the 𝑗𝑡ℎ row contains a dummy index 

instead of the 𝑖 index. 
More details of this algorithm can be found in [20]. 
 

 

Figure 6. Example of greedy convex decomposition [18].  

 

Figure 7. Example of a wavefront algorithm [19].  

 

Figure 8. Example of spiral spanning-tree coverage [22].  
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5. TRAVERSAL OF THE CELLS 

Several different traversal methods are presented in this 
section. The map presented in Section 5.1 is used as an 
illustration. 

5.1. Map of the car park 

The car park consists of only one floor, with the black areas 
representing the obstacles (the possible free parking spaces are 
also considered as obstacles). The red X represents the preferred 
location. The map of this car park can be seen in Figure 10, the 
decomposed map can be seen in Figure 9 (rectangular 
decomposition was used) and the assigned distance values from 
the wavefront algorithm can be seen in Figure 11. 

All the algorithms stop when the step number exceeds a given 
number, which depends on the number of cells. The maximal 
step number of the following simulations is 57. 

5.2. Visitedness- and preference-based traversal 

This method first visits the unvisited neighbouring cells (see 
Figure 12). If there are a number of neighbouring cells that are 
unvisited, the cell with the highest preference value is the 
following cell (see Figure 13).  

In the map in Section 5.1, one cell remains unvisited. This 
results from the low preference values in that area. The algorithm 
visits the neighbouring cells of the unvisited cell only once, and 
the other cells have higher preference values, so they are the next 
cells of the traversal. A traversal designed by this method can be 
seen in Figure 14. 

 

 

Figure 9. The decomposed map of the car park; the initial cell is cell number 
10. 

 

Figure 10. Map of the car park; the red X represents the preferred location.  

 

Figure 11. The distance values of the cells. 

 

Figure 12. The visitedness of the cells determines the following cell, which is 
in red.  

 

Figure 13. The preference value determines the following cell. 

 

Figure 14. The visitedness- and preference-based traversal of the car park.  
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5.3. Visitedness- and preference-based traversal with dynamic 
preference 

This method differs from the previous one by applying 
dynamic preference. This means the preference value of the cell 
visited last is decreased during the traversal. In this case, the 
preference values of the cells decreased by 2 every time they were 
visited.  

As a result, every cell could be visited; the preference values 
of the cells visited first were decreased enough so that the 
algorithm would select the cells with lower preference values as 
the next cells. Figure 15 provides an example of this method. 

5.4. Visitedness- and preference-based traversal with dynamic 
preference while avoiding unnecessary cells 

A map may contain cells that are not adjacent to parking 

spaces, as they do not contain any c ∈ Cvis points, so it is not 
necessary to visit them. In this case, the preference values of 
these cells can be changed to 0, and they can be marked as visited 
at the beginning. The algorithm will then only visit these cells in 
order to reach other cells. In Figure 16, the white cells represent 
cells that do not need to be visited. 

5.5. Preference- and visitedness-based traversal 

This method selects the next cell based on its preference value 
(see Figure 17). If a number of neighbouring cells have the same 
preference value, the algorithm selects the following one based 
on the visitedness of the cell (see Figure 18). 

As can be seen in Figure 19, the cells with the highest 
preference values are visited multiple times, while cells with 
lower preference values may remain unvisited. 

5.6. Preference- and visitedness-based traversal with additional 
preference values 

As preference- and visitedness-based traversal mainly selects 
the next cell based on its preference value, this method should 
be used in cases where the driver wants to park at a given 
location. Additional preference values can also be applied to 
attract the traversal to the desired location. 

Figure 20 provides an example of the applied additional 
preference values. The highest additional preference value (5) 
was added to the cell that contains the preferred location (see 
Figure 10), so each neighbouring cell gets one smaller additional 
preference value until the fourth neighbouring cell (the range of 
the preference is 5). 

It can be seen in Figure 21 that the algorithm navigates to the 
highly preferred area in the shortest possible path, and 
subsequently, the traversal only moves around one obstacle by 
traversing the cells with the highest preference values. 

 

Figure 15. The visitedness- and preference-based traversal of the car park 
with dynamic preference.  

 

Figure 16. The visitedness- and preference-based traversal of the car park 
with dynamic preference while avoiding unnecessary cells. 

 

Figure 17. The preference value determines the following cell.  

 

Figure 18. The visitedness of the cells determines the following cell. 

 

Figure 19. Preference- and visitedness-based traversal.  

                                      

                                      

                                      



 

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 21 

5.7. Preference- and visitedness-based traversal with additional 
preference values and dynamic preference 

The previous algorithm can also be applied when using 
dynamic preference values. In this case, the preference values of 
the visited cells are decreased by 2 every time they are visited. It 
can be seen in Figure 22 that the algorithm visits the cells with 
high preference values, but then also visits the neighbouring cells. 
In this case, every cell is visited.  

This method might be the closest to human thinking. First, it 
searches for free parking spaces in the highly preferred area, then 
it goes a bit further and returns to the preferred location. Finally, 
it also visits the cells that are furthest from the preferred cells. 

5.8. Making the traversal repeatable 

The presented traversals do not lead back to the initial 
position. It is possible that no free parking spaces were found 
during the first traversal of the car park, so the traversal should 

be repeated in order to find a suitable free parking space. There 
are two possible solutions to this problem: regenerate the 
traversal from the current cell as the initial cell or plan a path 
back to the initial cell from the current cell so that the original 
traversal can be repeated. 

6. COST OF THE TRAVERSAL 

The quality of the detected free parking space can be 
measured with a cost function. There are two main factors that 
should be considered: the time spent searching for a free parking 

space (which is proportional to the driven-route length 𝑤1 in 

Section 3) and the distance from the preferred location (𝑤2 in 
Section 3). There is a trade-off between these two factors, but 
the quality of a parking space also depends on personal 
preferences: the importance of the proximity to a preferred 
location or a short driven-route length. 

The 𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ (𝑤1 in Section 3) (5) is the sum of the 
distances between the cell centres during the traversal, the 

𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠 (𝑤2 in Section 3) (6) to the preferred location is the 

preference (𝑝𝑟𝑒𝑓𝑉𝑎𝑙) weighted sum of the Euclidean distances 
measured from the preferred location and the cost function 

(𝑐𝑜𝑠𝑡), which is calculated for each cell, is a personal preference 

(α) weighted sum of the 𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ and 𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠 (7). The 

smaller the α value, the better a closer parking space. 

𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ∑ Length(𝑅𝑜𝑢𝑡𝑒i)

N

i=1

, (5) 

𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠

=  ∑
𝑝𝑟𝑒𝑓𝑉𝑎𝑙i

∑ 𝑝𝑟𝑒𝑓𝑉𝑎𝑙𝑗
P
j=1

⋅ dist(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑝𝑟𝑒𝑓𝐿𝑜𝑐i)

P

i=1

, 
(6)  

𝑐𝑜𝑠𝑡 = α ⋅ 𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ + (1 − α) ⋅ 𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠, (7) 

where 𝑁 is the number of route sections, 𝑃 is the number of 

preferred locations and α is the weighting factor. 
The quality of a free parking space can be determined by the 

value of the cost function. The driver should establish a 
threshold value, and free parking spaces at lower costs are 
adequate. The better a parking space is, the lower the value of 
the cost function. 

7. COMPARISON OF THE TRAVERSALS 

In this section, the previously presented methods are 
compared based on the step number (Section 7.1), the cell 
visitedness ratio (Section 7.2), the number of visits to each cell 
(Section 7.3) and the cost function (Section 7.4). 

7.1. Step number 

The step number gives the number of steps needed to visit 
every cell at least once. Traversing from one cell to another is 
considered as one step. As the algorithm stops when more than 
a given number of steps is exceeded, the maximum number of 
steps in this map is 57. 

Table 1 shows how many steps are needed when different 
methods were applied. It can be seen that when the visitedness- 
and preference-based method (Sections 5.2–5.4) was applied, 
fewer unvisited cells remained. When there were cells marked as 
unnecessary to visit (Section 5.4), only 30 steps were sufficient to 
visit all the other cells, and in the end, two out of three marked 

 

Figure 20. The additional preference values. 

 

Figure 21. Preference- and visitedness-based traversal with additional 
preference values. 

 

Figure 22. Preference- and visitedness-based traversal with additional 
preference values and dynamic preference. 
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cells remained unvisited. When dynamic preference (Sections 
5.3, 5.4 and 5.7) was applied, fewer steps were needed and fewer 
cells remained unvisited. 

7.2. Cell visitedness ratio 

The cell visitedness ratio represents the number of visited 
cells relative to the number of cells in each step. Figure 23 shows 
the visitedness ratio for the different methods using different 
colours. Cells marked as unnecessary in Section 5.4 are also 
included in the number of cells. The legend gives the section 
number in which the traversal method is presented. 

First, every cell is visited for the first time, so this ratio grows 
at each step. When applying the preference- and visitedness-
based method without dynamic preference (Sections 5.5 and 5.6), 
the final value of the ratio is lower than in other cases. These 
methods visit only the cells with high preference values (60 %–
75 % of the cells). The other methods visit nearly all the cells 
(more than 80 % of the cells). Applying dynamic preference 
(Section 5.7) makes the visiting of the remaining unvisited cells 
more probable. When visitedness- and preference-based 
traversal (Sections 5.2–5.4) was used, the algorithm visited the 
unvisited neighbouring cells first, so there were fewer cells that 
remained unvisited. 

7.3. The number of visits to each cell 

The following diagrams show the number of visits to each 
cell. Numbers on the horizontal axis represent the indices of the 
cells shown in Figure 9. 

Visitedness- and preference-based traversal 

This method’s traversal (Section 5.2) visits the unvisited cells 
first. Cells with high preference values are visited more frequently 
(5–6 times), but there is only one cell (cell 14) that is unvisited. 
For example, the preference value of cell 13 is 9 (see orange bar 
in Figure 24), and this cell was visited 6 times (see blue bar in 
Figure 24). The diagram demonstrating the number of visits to 
each cell can be seen in Figure 24. 

Visitedness- and preference-based traversal with dynamic preference 

By applying dynamic preference (Section 5.3), all the cells 
become visited and the maximum number of visits to each cell is 
four. Most of the cells are visited once or twice, so the application 
of dynamic preference decreases the number of visits (Figure 25). 

Visitedness- and preference-based traversal with dynamic preference 
while avoiding unnecessary cells 

There can be cells in a map that do not need to be visited 
because there are no parking spaces around them. In this case, 
they are only visited if the traversal goes through them in order 
to reach another cell (Section 5.4). In Figure 26, the only 
unvisited cells are unnecessary ones (unnecessary cell indices: 4, 
5, 19). Due to dynamic preference, the other cells are visited only 
once or twice. 

Preference- and visitedness-based traversal 

This method (Section 5.5) visits the cells with a high 
preference value first and more frequently because the algorithm 
selects the next cell based on the preference value of the 
neighbouring cells. In Figure 27, it can be seen that most of the 
visited cells are visited 5–6 times, but there are a large number of 
unvisited cells. 

 
  

Figure 23. Cell visitedness ratio of the presented methods.  

 

Figure 24. Number of visits to each cell (method presented in Section 5.2).  

 

Figure 25. Number of visits to each cell (method presented in Section 5.3); 
the preference values shown in this figure are the original values, not the 
decreased values. 

Table 1. The number of steps needed when applying different methods. 

Method section number  5.2 5.3 5.4 5.5 5.6 5.7 

Number of steps 57 56 30 57 57 42 

Number of unvisited cells 1 0 2 5 8 0 
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Preference- and visitedness-based traversal with additional preference 
values 

In Figure 28, it can be seen that due to the application of 
additional preference values fewer cells are visited, but they are 
visited 6 times. This algorithm (Section 5.6) navigates to the most 
preferred location (there was an additional preference applied 
with a range of 5 and a value of 5 in the cell with index 12) in the 
shortest possible route (these cells are only visited once), then it 
only moves around the preferred area. 

Preference- and visitedness-based traversal with additional preference 
values and dynamic preference 

When applying dynamic preference (Section 5.7), all the cells 
are visited, and each cell is visited a maximum of 3 times instead 
of 5–6 times (Figure 29). 

7.4. Cost function 

The algorithm can decide whether a free parking space is 
suitable or not based on a cost function. The defined cost 
function is based on two factors: the driven-route length and 
distance from the preferred location. 

The estimated route length of a method depends on the step 
number; the higher the step number, the longer the route length 
(see Table 2). The route length is measured in pixels (the real 
distance depends on the graphic scale of the map). 

The other aspect of cost function is the distance from the 
preferred location. The distance is calculated at every step, and it 
depends strongly on the traversal method. The minimum 
distance from the preferred location is 50 pixels in this example. 

Visitedness- and preference-based traversal 

This method (Section 5.2) visits the unvisited cells first, only 
reaching the possible minimum distance 3 times during the 
traversal. It can be seen in Figure 30 that the distance is between 
180 and 330 pixels most of the time. 

Visitedness- and preference-based traversal with dynamic preference 

Figure 31 shows that the shape of the distance function is 
similar to the function in Figure 30. This function also has three 
minimum points due to dynamic preference (Section 5.3); only 
the visiting order of the cells is different, and the unvisited cells 
are also visited. 

 

 

Figure 26. Number of visits to each cell (method presented in Section 5.4); 
the preference values shown in this figure are the original values, not the 
decreased values. 

 

Figure 27. Number of visits to each cell (method presented in Section 5.5).  

 

Figure 28. Number of visits to each cell (method presented in Section 5.6).  

 

Figure 29. Number of visits to each cell (method presented in Section 5.7); 
the preference values shown in this figure are the original values, not the 
decreased values.  

Table 2. The route length of each method. 

Method section number  5.2 5.3 5.4 5.5 5.6 5.7 

Number of steps 57 56 30 57 57 42 

Route length 6752 6608 3184 6555 6671 4379 
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Visitedness- and preference-based traversal with dynamic preference 
while avoiding unnecessary cells 

This method (Section 5.4) avoids the cells that have no 
parking spaces next to them, so the step number is lower than in 
the previous methods. It can be seen in Figure 32 that the 
traversal visits the cell nearest to the preferred location only once, 
but the length of this traversal is much shorter due to the smaller 
number of steps. 

Preference- and visitedness-based traversal 

This method (Section 5.5) visits cells with a high preference 
value more often. The preferred location is far from the initial 
cell, so it has a high distance value. Without an additional 
preference value, the algorithm also visits the preferred location 
5 times, as can be seen in Figure 33. 

Preference- and visitedness-based traversal with additional preference 
values 

By applying additional preference values (Section 5.6), the 
traversal reaches the minimal distance from the preferred 
location 6 times (Figure 34). It can also be seen that the traversal 
repeats the same path, as one part of the function is repeated 5 
times. 

Preference- and visitedness-based traversal with additional preference 
values and dynamic preference 

As a result of dynamic preference (Section 5.7), the cells that 
are further from the preferred location are also visited. The 
traversal has only three minimum points (Figure 35) because 
when a cell becomes visited, the preference value of this cell is 
decreased. 

 

Figure 30. Distance from preferred locations (method presented in Section 
5.2). 

 

Figure 31. Distance from preferred locations (method presented in Section 
5.3).  

 

Figure 32. Distance from preferred locations (method presented in Section 
5.4).  

 

Figure 33. Distance from preferred locations (method presented in Section 
5.5). 

 

Figure 34. Distance from preferred locations (method presented in Section 
5.6).  

 

Figure 35. Distance from preferred locations (method presented in Section 
5.7). 
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8. HANDLING MULTI-STOREY CAR PARKS 

As there is a considerable lack of free parking spaces in city 
centres, an increasing number of multi-storey car parks have 
been constructed to ensure there are enough free parking spaces 
to meet demand. The traversal of these car parks is similar to 
those in the presented methods. 

The storeys of a multi-storey car park can be handled 
individually. This means that the traversal of each floor should 
be planned independently from the other floors, with the only 
extra requirement being the minimising of the transition between 
levels. To plan a traversal of each floor, the map of the floor must 
be known. Some floors are preferred over others, so these floors 
should be traversed first. If there is no free parking space on the 
preferred floor, the driver must either go around again or go to 
another floor. 

The traversal to another floor can be forced so that the 
preference values of all the cells can be set to zero except for the 
cell representing the ramp to the other floor, which has a high 
preference value with a large range. Figure 36 shows the map of 
the first floor of a car park, and Figure 37 shows its second floor. 
The car park entrance and the ramp to the next floor are also 
indicated on the maps. The maps of the floors are the same, with 
only different entrance and exit locations. 

The planned traversals for the whole car park can be seen in 
Figure 38 to Figure 40. There are no additional preference values 
during the traversal, and the traversal is planned based on 
visitedness and preference, with dynamic preference values. The 
traversal of the first floor (Figure 38) is much longer than the 
traversal of the second floor (Figure 40). The first floor can be 
traversed in 56 steps, but the second floor needs only 33 steps to 
be traversed. The traversal method of the floors is the same, only 
the entrance locations are different. This example shows how the 
traversal depends on the location of the entrance point. 

9. CONCLUSION 

As searching for a free parking space is a time-consuming 
task, the aim of this paper is to design different car park 
exploration strategies. 

The implemented algorithms used the core concepts of CPP 
algorithms, which is possible because the car park exploration 
problem is similar to CPP problems. CPP algorithms are used to 
plan the paths of vacuum-cleaner robots, lawnmower robots and 
robots for different purposes, which are designed to reach every 
free point of a configuration in the shortest possible time while 
avoiding obstacles. During car park exploration, the vehicle does 
not have to reach every free point of the map, it only has to drive 
by all the possible free parking spaces. 

The car park map is decomposed by using trapezoidal cell 
decomposition. This method leads to cells with large areas, and 
the planned traversal contains reversals. If the map is 

decomposed using both 𝑥 and 𝑦 axes, the created cells are 
smaller, and every cell has only one neighbouring cell in each 
direction. In this case, the traversal can take personal preferences 

 

Figure 36. Map of the first floor.  

 

Figure 37. Map of the second floor. 

 

Figure 38. Traversal of the first floor. 

 

Figure 39. Traversal of the first floor to the exit ramp. 

 

Figure 40. Traversal of the second floor. 
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into account by using the wavefront algorithm. The distance 
values can be modified in order to attract the traversal to a given 
location (e.g. entrances, lifts, etc.). 

The traversal can be planned by taking the preference values 
and the visitedness of the cells into account. The first method 
presented only takes the preference values into account, so the 
traversal does not visit every cell on the map, only the ones with 
high preference values. Another method chooses the next cell 
based on the preference value, but in case of equal preference 
values, the next cell is an unvisited one. The third wavefront 
algorithm-based traversal is based on visitedness and preference, 
and it visits the unvisited neighbouring cells first. This method is 
more likely to visit all the cells on the map. 

In order to compare the presented methods, quality 
characteristics were defined: step number, the cell visitedness 
ratio at each step, the number of visits to each cell and a cost 
function. The step number shows how many steps are needed in 
order to visit every cell; the algorithm stops if the step number 
exceeds a given number. The cell visitedness ratio shows the ratio 
of the visited cells at each step. The cost function is based on two 
factors: the driven-route length and the weighted sum of the 
distance from the preferred locations. If a free parking space is 
found, the decision as to whether it is suitable is based on the 
cost function. 

The implemented algorithms were tested in simulations, the 
results of which are detailed in Section 5. The simulation results 
demonstrate that the different methods can be used in different 
situations. The visitedness- and preference-based traversals visit 
nearly every cell on the map. If dynamic preference is applied, 
there is a higher chance that every cell becomes visited. It is also 
possible that there are cells that do not need to be visited. In this 
case, their preference value can be changed to 0, and they are 
marked as visited at the beginning. These cells only become 
visited when the traversal passes through them to reach other 
cells. Visitedness- and preference-based methods should be used 
when it is important to find a free parking space as soon as 
possible. These methods visit the cells with high preference 
values more frequently. If additional preference values are 
applied, the traversal moves around the preferred area. If 
dynamic preference is applied, the traversal visits the preferred 
cells first, then goes further away from the preferred area. 
Preference- and visitedness-based methods should be used if it 
is important to park near the preferred location. 

Future work will include testing the implemented methods in 
a real environment and handling situations in which multiple 
vehicles are searching for free parking spaces at the same time. 
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