
ACTA IMEKO
ISSN: 2221-870X
September 2021, Volume 10, Number 3, 15 - 27

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 15

Using coverage path planning methods for car park
exploration

Anna Barbara Ádám1, László Kocsány1, Emese Gincsainé Szádeczky-Kardoss1

1 Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary

Section: RESEARCH PAPER

Keywords: Car park exploration; coverage path planning; parking assistant system

Citation: Anna Barbara Ádám, László Kocsány, Emese Gincsainé Szádeczky-Kardoss, Using coverage path planning methods for car park exploration, Acta
IMEKO, vol. 10, no. 3, article 5, September 2021, identifier: IMEKO-ACTA-10 (2021)-03-05

Section Editor: Bálint Kiss, Budapest University of Technology and Economics, Hungary

Received January 13, 2021; In final form September 17, 2021; Published September 2021

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Corresponding author: Anna Barbara Ádám, e-mail: annadam97@gmail.com

1. INTRODUCTION

With an increasing number of vehicles on the roads, it is
becoming difficult to find a free parking space. Several sensor-
based parking assistant systems have been developed in the past
decade to make it easier to find a free parking space in busy areas,
such as city centres and shopping malls. These systems mainly
include sensors installed in each parking space that can detect the
presence of a car by measuring its weight with pressure sensors;
sensing the car body with magnetic sensors or infrared and
ultrasonic sensors can determine if something is in the examined
area.

The main problem with these parking systems is the need for
extra infrastructure and sensors. As most car parks are not
equipped with sensors, which indicate the occupancy of the
parking space, a vehicle must drive passed a parking space to be
able to detect if it is free [1]. There are also Internet-of-Things
(IoT) systems, which involve not only the signals of the sensors
but also mobile applications [2]. These systems can navigate the
driver to the free parking spaces in the shortest possible time.

The main purpose of this paper is to present an installed
sensor-free car park exploration method that navigates the
vehicle to all the possible free parking spaces. Autonomous
vehicles are able to detect the free parking spaces with sensors
installed in the vehicle (e.g. LiDAR [3]). As the coverage path
planning (CPP) problem is similar to the car park exploration
problem, the core concepts of CPP algorithms can be used.

This paper is organised as follows. Section 2 presents the most
commonly used parking systems and provides examples, while
the formulation of the car park exploration problem can be
found in Section 3. Section 4 presents some cell decomposition
and grid-based CPP methods and explains how they are used for
car park exploration. An improved version of trapezoidal cell
decomposition can also be found in this section. Different
traversal methods are presented in Section 5, while Section 6
introduces a cost function to grade the free parking spaces. The
presented exploration methods are compared in Section 7, and
the method for using them in multi-storey car parks is presented
in Section 8. Section 9 derives the conclusions from the different
traversals and presents possible avenues for future work.

ABSTRACT
With the increasing number of vehicles on the roads, finding a free parking space has become a time-consuming problem. Traditional
car parks are not equipped with occupancy sensors, so planning a systematic traversal of a car park can ease and shorten the search.
Since car park exploration is similar to coverage path planning (CPP) problems, the core concepts of CPP algorithms can be used. This
paper presents a method that divides maps into smaller cells using trapezoidal cell decomposition and then plans the traversal using
wavefront algorithm core concepts. This method can be used for multi-storey car parks by planning the traversal of each floor separately
and then the path from one floor to the next. Several alternative explorational paths can be generated by taking different personal
preferences into account, such as the length of the driven route and the proximity to preferred locations. The planned traversals are
compared by step number, the cell visitedness ratio, the number of visits to each cell and the cost function. The comparison of the
methods is based on simulation results.

mailto:annadam97@gmail.com

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 16

2. PARKING ASSISTANT SYSTEMS

The literature proposes various solutions for autonomous
parking with sensors installed in car parks. These systems require
a centralised parking system in which a server stores the
occupancy of the parking spaces based on the sensor signals.
When a vehicle requests a parking space, the server reserves one
for the vehicle.

CCTV systems are widely available in car parks.
Consequently, algorithms using image processing algorithms are
able to detect the occupancy of a parking space based on camera
signals. For example, Athira et al. [4] present an optical character
recognition system that detects occupied parking spaces based
on CCTV signals.

Another solution is the availability of IoT-enabled cities, often
referred to as smart cities. Smart cities can provide information
about the availability of parking spaces. If a centralised parking
system server is available, the vehicle is able to request
information about the occupancy of parking spaces from the
server. Al-Turjman et al. [4] present a survey of IoT-enabled
cities. The use-case practices are also presented, including the
smart payment system, the parking reservation system and the e-
parking system.

There are several commercially available solutions for smart
parking. In Hungary, two such solutions can be found in
Budapest. The first is Parkl [5], which is a smartphone application
providing information about the location of car parks and
making cashless payment possible. Parkl does not provide the
exact location of the parking spaces but the location of parking
zones in the city where possible parking spaces can be found. In
comparison, Parker [6] (developed by Smart Lynx Ltd.) provides
information about the exact occupancy of about 1,500 parking
spaces in the city centre. This solution uses preinstalled sensors
to indicate the occupancy of a given parking space to the driver.
Parker also provides a cashless payment service for its users.

The algorithm presented in this paper provides a car park
exploration method using CPP. Car park exploration is required
because no additional signals for preinstalled sensors in car parks
are used. A complete system is therefore required to perform the
car park search from the creation of the exploration path to
detecting appropriate parking spaces and performing the parking
manoeuvre. This system is called the autonomous parking system
and consists of four subsystems, as the parking task can be
broken down into four subtasks.

The first task of the autonomous parking system is to provide
an exploration path for the vehicle. The focus of this paper is to
propose a solution for this subsystem by applying CPP
algorithms. This subsystem provides multiple goal
configurations for the vehicle. These goal configurations are
required, as the avoidance of preinstalled sensors leads to the loss
of the goal configuration.

The second subsystem is a detector subsystem. The main task
is to scan the environment and detect parking spaces for the
vehicle while the vehicle is driving along the exploration path [3].
In order to be able to detect parking spaces, a sensor must be
mounted on the vehicle. The first subsystem should consider the
sensor parameters during the planning of the exploration path.

When a parking space is found, the third and fourth
subsystems plan and execute the parking manoeuvre [7], [8].

3. CAR PARK EXPLORATION

The goal of car park exploration is to plan a path leading to
all the possible free parking spaces. The binary map (Figure 2) of

the car park (Figure 1) is known, and the parking spaces are
treated as obstacles. While following the planned path, a sensor
(e.g. LiDAR) searches for a suitable free parking space.

In this formulation, C ⊂  R𝟚 defines the workspace of car

park exploration and 𝒜 denotes the vehicle. The state of the

vehicle is 𝑞 = [
𝑥
𝑦], where 𝒜(𝑞) ⊂ 𝐶, while [

𝑥
𝑦] denotes the

position of the vehicle in a fixed frame (the orientation of the
vehicle is not taken into account). The workspace consists of

obstacles (𝐶obs ⊂ 𝐶) and free spaces (𝐶free = C  ∖ 𝐶obs), some

of which need to be visited (𝐶vis ⊆ 𝐶free). The vehicle can move

only in free space (∀𝑞 ∈ 𝐶free).

The vehicle moves on a collision-free path (τ), where 𝑠𝑖 ∈ 𝑅

is a scalar path parameter (𝑠 ∈ [0, 𝑇], 𝑇 is the length of the whole
path):

τ: 𝑠 ↦ 𝑞, ∀𝑠 ∈ [0, 𝑇]: τ(𝑠) ∈ 𝐶free . (1)

𝐿(𝑞) ⊂ 𝐶 denotes the points that are inside the range (δ) of
the sensor, which detects the free parking spaces:

𝐿(𝑞) = { 𝑧 ∈ 𝐶free| ‖𝑞 − 𝑧‖ ≤ 𝛿}, (2)

where ‖𝑞 − 𝑧‖ is the Euclidean distance between points 𝑞

and 𝑧.
The points seen while traversing the path are

𝐿(τ(𝑡)) = ⋃ 𝐿(τ(𝑠))

𝑠∈[0,𝑡]

. (3)

The aim is to reach every position that should be visited
during the exploration:

𝐶vis ⊆ 𝐿(τ(𝑇)). (4)

Other constraints that should be considered are as follows:

• The start position is τ(0) = 𝑞init.

Figure 1. Map of a car park.

Figure 2. Binary map of a car park.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 17

• Cost can be assigned to the path as 𝑤1(τ) (e.g. length
of the path).

• Preferred positions are provided for, which are

considered first. The 𝑤2(𝑞) cost can be assigned to the

𝑞 ∈ 𝐶𝑓𝑟𝑒𝑒 position (e.g. distance from the target

position).

• The traversal can be interrupted when a condition is
met (parking space detected with LiDAR).

• When stopping while driving (at some point with 𝑠1
path parameter), the cost of the traversal is the personal

preference weighted (𝛼) sum of 𝑤1 and 𝑤2: 𝑤1(τ) +

𝛼 𝑤2(τ(𝑠1)) (the cost of the path up to that point plus

the cost of the position).

• There might be constraints to the order of the

configurations in τ path (e.g one-way streets).

4. USING COVERAGE PATH PLANNING METHODS

The purpose of CPP methods is to plan an obstacle-free path
that reaches every free point of the given configuration.

This section presents car park traversal-related computational
problems. It also explains the idea behind using CPP algorithms
for the traversal and provides an overview of the most
commonly used cell decomposition and grid-based methods.
Finally, methods chosen for implementation are presented.

4.1. Related computational problems

CPP is similar to the travelling salesman problem [10], in
which the salesman has to visit all the cities via the shortest route
possible and return to the beginning. The cities are represented
as nodes on a graph and the routes between them are the edges.
The travelling salesman problem is NP-hard, which means it is
at least as hard as any NP problem, so it cannot be solved with
polynomial-time algorithms.

During path planning, an important factor in terms of the
path is the exploration of the environment. Two computational
geometric problems are related to this: the museum problem [11]
calculates the fewest number of guards required to observe the
whole museum, while in the watchman problem [12], only the
map of the region is given, and the main purpose is to plan the
shortest possible path between the obstacles so that the
watchman can guard the entire area.

4.2. Cell decomposition-based path planning

There are several cell decomposition-based path planning
methods that divide a map into cells. Exact cellular
decomposition methods [12] divide the free space into various-
sized nonoverlapping cells. The union of the cells covers the
whole free configuration.

Trapezoidal cell decomposition [14] can only be used in
polygonal environments, as it extends rays from the vertices of
the obstacles. These rays and the edges of the obstacles form the
cell borders, dividing a map into trapezoidal or triangular cells.
An example of this method can be seen in Figure 3.

Boustrophedon (Greek: ‘ox turning’) decomposition [15]
extends rays from the entry and exit points of the obstacles, so
fewer rays are extended than in trapezoidal cell decomposition.
Consequently, the cells have a larger area. Figure 4 shows an
example of this method.

When applying Morse decomposition [12], the critical points
of the smooth function, called the Morse function, indicate the
boundaries of the cells (see Figure 5).

Greedy convex polygon decomposition [18] can be used
when there are polygonal obstacles. This method consists of two
types of cuts:

• a single cut: a cut from a nonconvex vertex to an
existing edge or another cut,

• a matching cut: cutting two nonconvex vertices.

First, all the matching cuts are made on the nonconvex

vertices, then the single cuts are made for the unmatched
vertices. In the example in Figure 6, the matching cuts are green
and the single cuts are red. The cell boundaries are the set of cuts
and the edges of the obstacles.

After dividing the map, the adjacency matrix of the cells can
be created. Two cells are adjacent if they have a common
boundary, and the boundary has a given number of common
points. The purpose of cell decomposition-based methods is to
visit every cell once, although it is not always possible. If the
adjacency matrix of the cells is known, a traversal can be planned,
as it is known which cell can be visited from the current one.
After creating the traversal, a path can be planned that leads
through the cells in a given order reaching every free point of the
configuration.

Figure 3. Example of trapezoidal cell decomposition [14].

Figure 4. Example of Boustrophedon decomposition [16].

Figure 5. Example of Morse decomposition [17].

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 18

4.3. Grid-based path planning

In contrast to the cell decomposition-based methods, grid-
based methods divide the map into same-sized cells, called a grid.
The cells are classified into two groups, those that have obstacle
points inside the cell and those without obstacle points.

The wavefront algorithm [9] assigns distance values to every
cell in the map, with each neighbouring cell being assigned one
larger distance value, starting from the initial cell, which has a
distance value of 0. The traversal of the cells is based on distance
values, and the neighbouring unvisited cell with the largest
distance value is the following cell. If a number of unvisited
neighbouring cells have the same distance value, the following
cell is selected randomly. An example of this method can be seen
in Figure 7.

The spiral spanning-tree coverage method [21] builds up a
graph with nodes that represent the centres of the obstacle-free
cells and edges that represent the lines between the neighbouring
cell centres. The cells are divided into four subcells, which are
classified into two groups: those that have four unvisited subcells
(called new cells) and those that have at least one visited subcell
(called old cells). First, every cell is unvisited, and the algorithm
starts from the initial cell and marks it as an old cell. The initial
cell is the root of the spanning tree. In the subsequent steps,
every cell neighbouring the current cell is tested if it is a new cell.
If the cell has a neighbouring new cell, a spanning-tree edge is
added from the current cell to the neighbouring cell, and then
the algorithm moves to a subcell of the neighbouring cell and
adds the centre of the neighbouring cell to the tree as a node. If
there is a backwards move from the current cell to a subcell of
the parent cell along the right-hand edge of the spanning tree, the
algorithm terminates. Figure 8 provides an example of this
method.

4.4. Using coverage path planning methods for car park
exploration

In order to plan the traversal of a car park, the map of the car
park should be divided into smaller regions. As most car parks
consist of polygonal obstacles, trapezoidal cell decomposition
can be used to divide the map. The cells can be treated as a grid,
so wavefront algorithm core concepts can be used to plan the
traversal of the cells. The main advantage of the wavefront
algorithm is that it can take personal preferences into account by
modifying the distance values of the cells.

4.5. Rectangular cell decomposition

As rectangular decomposition is based on trapezoidal cell
decomposition, it can only be used in polygonal environments.
If the map contains nonpolygonal obstacles, the bounding boxes
of the obstacles should be taken into account when decomposing
the map. Trapezoidal cell decomposition decomposes the map

using only one axis (𝑥 or 𝑦), so the decomposed map may
contain cells covering large areas. The main disadvantage of this
method is that the traversal of the cells is not unequivocal, so a
path should be planned inside a cell from which all of the free
parking spaces can be seen.

Rectangular cell decomposition decomposes the map using

both 𝑥 and 𝑦 axes. The final cells are the intersections of the cells
decomposed by these axes. The final cells are smaller and
rectangular, which is the main advantage of this method; every
cell has only one neighbouring cell in each direction. An example
of a decomposed map can be seen in Figure 9, where the
coloured rectangles indicate the cells.

The adjacency matrix of the cells can be created after dividing

the map. This matrix is an 𝑛 × 4 matrix, where 𝑛 is the number
of cells. The rows of the matrix store the indices of the adjacent
cells of every cell in each direction. If two cells have common
boundaries, and the vehicle can pass from one cell to the other,
these cells are adjacent. Cells neighbouring obstacles and cells on
the edges of the map do not have four neighbouring cells, so the
neighbouring obstacles and edges are considered as their
neighbours (an implementational solution might be to store these

false neighbours as dummy indices, e.g. −1). If there are one-way
road sections, moving from one cell to the other is permitted,

but moving in the opposite direction is prohibited, so the 𝑖𝑡ℎ cell

is adjacent to the 𝑗𝑡ℎ cell but not vice versa. This means that the

𝑖𝑡ℎ row of the adjacency matrix contains the 𝑗-cell index in the

appropriate column, but the 𝑗𝑡ℎ row contains a dummy index

instead of the 𝑖 index.
More details of this algorithm can be found in [20].

Figure 6. Example of greedy convex decomposition [18].

Figure 7. Example of a wavefront algorithm [19].

Figure 8. Example of spiral spanning-tree coverage [22].

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 19

5. TRAVERSAL OF THE CELLS

Several different traversal methods are presented in this
section. The map presented in Section 5.1 is used as an
illustration.

5.1. Map of the car park

The car park consists of only one floor, with the black areas
representing the obstacles (the possible free parking spaces are
also considered as obstacles). The red X represents the preferred
location. The map of this car park can be seen in Figure 10, the
decomposed map can be seen in Figure 9 (rectangular
decomposition was used) and the assigned distance values from
the wavefront algorithm can be seen in Figure 11.

All the algorithms stop when the step number exceeds a given
number, which depends on the number of cells. The maximal
step number of the following simulations is 57.

5.2. Visitedness- and preference-based traversal

This method first visits the unvisited neighbouring cells (see
Figure 12). If there are a number of neighbouring cells that are
unvisited, the cell with the highest preference value is the
following cell (see Figure 13).

In the map in Section 5.1, one cell remains unvisited. This
results from the low preference values in that area. The algorithm
visits the neighbouring cells of the unvisited cell only once, and
the other cells have higher preference values, so they are the next
cells of the traversal. A traversal designed by this method can be
seen in Figure 14.

Figure 9. The decomposed map of the car park; the initial cell is cell number
10.

Figure 10. Map of the car park; the red X represents the preferred location.

Figure 11. The distance values of the cells.

Figure 12. The visitedness of the cells determines the following cell, which is
in red.

Figure 13. The preference value determines the following cell.

Figure 14. The visitedness- and preference-based traversal of the car park.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 20

5.3. Visitedness- and preference-based traversal with dynamic
preference

This method differs from the previous one by applying
dynamic preference. This means the preference value of the cell
visited last is decreased during the traversal. In this case, the
preference values of the cells decreased by 2 every time they were
visited.

As a result, every cell could be visited; the preference values
of the cells visited first were decreased enough so that the
algorithm would select the cells with lower preference values as
the next cells. Figure 15 provides an example of this method.

5.4. Visitedness- and preference-based traversal with dynamic
preference while avoiding unnecessary cells

A map may contain cells that are not adjacent to parking

spaces, as they do not contain any c ∈ Cvis points, so it is not
necessary to visit them. In this case, the preference values of
these cells can be changed to 0, and they can be marked as visited
at the beginning. The algorithm will then only visit these cells in
order to reach other cells. In Figure 16, the white cells represent
cells that do not need to be visited.

5.5. Preference- and visitedness-based traversal

This method selects the next cell based on its preference value
(see Figure 17). If a number of neighbouring cells have the same
preference value, the algorithm selects the following one based
on the visitedness of the cell (see Figure 18).

As can be seen in Figure 19, the cells with the highest
preference values are visited multiple times, while cells with
lower preference values may remain unvisited.

5.6. Preference- and visitedness-based traversal with additional
preference values

As preference- and visitedness-based traversal mainly selects
the next cell based on its preference value, this method should
be used in cases where the driver wants to park at a given
location. Additional preference values can also be applied to
attract the traversal to the desired location.

Figure 20 provides an example of the applied additional
preference values. The highest additional preference value (5)
was added to the cell that contains the preferred location (see
Figure 10), so each neighbouring cell gets one smaller additional
preference value until the fourth neighbouring cell (the range of
the preference is 5).

It can be seen in Figure 21 that the algorithm navigates to the
highly preferred area in the shortest possible path, and
subsequently, the traversal only moves around one obstacle by
traversing the cells with the highest preference values.

Figure 15. The visitedness- and preference-based traversal of the car park
with dynamic preference.

Figure 16. The visitedness- and preference-based traversal of the car park
with dynamic preference while avoiding unnecessary cells.

Figure 17. The preference value determines the following cell.

Figure 18. The visitedness of the cells determines the following cell.

Figure 19. Preference- and visitedness-based traversal.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 21

5.7. Preference- and visitedness-based traversal with additional
preference values and dynamic preference

The previous algorithm can also be applied when using
dynamic preference values. In this case, the preference values of
the visited cells are decreased by 2 every time they are visited. It
can be seen in Figure 22 that the algorithm visits the cells with
high preference values, but then also visits the neighbouring cells.
In this case, every cell is visited.

This method might be the closest to human thinking. First, it
searches for free parking spaces in the highly preferred area, then
it goes a bit further and returns to the preferred location. Finally,
it also visits the cells that are furthest from the preferred cells.

5.8. Making the traversal repeatable

The presented traversals do not lead back to the initial
position. It is possible that no free parking spaces were found
during the first traversal of the car park, so the traversal should

be repeated in order to find a suitable free parking space. There
are two possible solutions to this problem: regenerate the
traversal from the current cell as the initial cell or plan a path
back to the initial cell from the current cell so that the original
traversal can be repeated.

6. COST OF THE TRAVERSAL

The quality of the detected free parking space can be
measured with a cost function. There are two main factors that
should be considered: the time spent searching for a free parking

space (which is proportional to the driven-route length 𝑤1 in

Section 3) and the distance from the preferred location (𝑤2 in
Section 3). There is a trade-off between these two factors, but
the quality of a parking space also depends on personal
preferences: the importance of the proximity to a preferred
location or a short driven-route length.

The 𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ (𝑤1 in Section 3) (5) is the sum of the
distances between the cell centres during the traversal, the

𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠 (𝑤2 in Section 3) (6) to the preferred location is the

preference (𝑝𝑟𝑒𝑓𝑉𝑎𝑙) weighted sum of the Euclidean distances
measured from the preferred location and the cost function

(𝑐𝑜𝑠𝑡), which is calculated for each cell, is a personal preference

(α) weighted sum of the 𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ and 𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠 (7). The

smaller the α value, the better a closer parking space.

𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ∑ Length(𝑅𝑜𝑢𝑡𝑒i)

N

i=1

, (5)

𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠

= ∑
𝑝𝑟𝑒𝑓𝑉𝑎𝑙i

∑ 𝑝𝑟𝑒𝑓𝑉𝑎𝑙𝑗
P
j=1

⋅ dist(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑝𝑟𝑒𝑓𝐿𝑜𝑐i)

P

i=1

,
(6)

𝑐𝑜𝑠𝑡 = α ⋅ 𝑅𝑜𝑢𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ + (1 − α) ⋅ 𝑁𝑒𝑎𝑟𝑛𝑒𝑠𝑠, (7)

where 𝑁 is the number of route sections, 𝑃 is the number of

preferred locations and α is the weighting factor.
The quality of a free parking space can be determined by the

value of the cost function. The driver should establish a
threshold value, and free parking spaces at lower costs are
adequate. The better a parking space is, the lower the value of
the cost function.

7. COMPARISON OF THE TRAVERSALS

In this section, the previously presented methods are
compared based on the step number (Section 7.1), the cell
visitedness ratio (Section 7.2), the number of visits to each cell
(Section 7.3) and the cost function (Section 7.4).

7.1. Step number

The step number gives the number of steps needed to visit
every cell at least once. Traversing from one cell to another is
considered as one step. As the algorithm stops when more than
a given number of steps is exceeded, the maximum number of
steps in this map is 57.

Table 1 shows how many steps are needed when different
methods were applied. It can be seen that when the visitedness-
and preference-based method (Sections 5.2–5.4) was applied,
fewer unvisited cells remained. When there were cells marked as
unnecessary to visit (Section 5.4), only 30 steps were sufficient to
visit all the other cells, and in the end, two out of three marked

Figure 20. The additional preference values.

Figure 21. Preference- and visitedness-based traversal with additional
preference values.

Figure 22. Preference- and visitedness-based traversal with additional
preference values and dynamic preference.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 22

cells remained unvisited. When dynamic preference (Sections
5.3, 5.4 and 5.7) was applied, fewer steps were needed and fewer
cells remained unvisited.

7.2. Cell visitedness ratio

The cell visitedness ratio represents the number of visited
cells relative to the number of cells in each step. Figure 23 shows
the visitedness ratio for the different methods using different
colours. Cells marked as unnecessary in Section 5.4 are also
included in the number of cells. The legend gives the section
number in which the traversal method is presented.

First, every cell is visited for the first time, so this ratio grows
at each step. When applying the preference- and visitedness-
based method without dynamic preference (Sections 5.5 and 5.6),
the final value of the ratio is lower than in other cases. These
methods visit only the cells with high preference values (60 %–
75 % of the cells). The other methods visit nearly all the cells
(more than 80 % of the cells). Applying dynamic preference
(Section 5.7) makes the visiting of the remaining unvisited cells
more probable. When visitedness- and preference-based
traversal (Sections 5.2–5.4) was used, the algorithm visited the
unvisited neighbouring cells first, so there were fewer cells that
remained unvisited.

7.3. The number of visits to each cell

The following diagrams show the number of visits to each
cell. Numbers on the horizontal axis represent the indices of the
cells shown in Figure 9.

Visitedness- and preference-based traversal

This method’s traversal (Section 5.2) visits the unvisited cells
first. Cells with high preference values are visited more frequently
(5–6 times), but there is only one cell (cell 14) that is unvisited.
For example, the preference value of cell 13 is 9 (see orange bar
in Figure 24), and this cell was visited 6 times (see blue bar in
Figure 24). The diagram demonstrating the number of visits to
each cell can be seen in Figure 24.

Visitedness- and preference-based traversal with dynamic preference

By applying dynamic preference (Section 5.3), all the cells
become visited and the maximum number of visits to each cell is
four. Most of the cells are visited once or twice, so the application
of dynamic preference decreases the number of visits (Figure 25).

Visitedness- and preference-based traversal with dynamic preference
while avoiding unnecessary cells

There can be cells in a map that do not need to be visited
because there are no parking spaces around them. In this case,
they are only visited if the traversal goes through them in order
to reach another cell (Section 5.4). In Figure 26, the only
unvisited cells are unnecessary ones (unnecessary cell indices: 4,
5, 19). Due to dynamic preference, the other cells are visited only
once or twice.

Preference- and visitedness-based traversal

This method (Section 5.5) visits the cells with a high
preference value first and more frequently because the algorithm
selects the next cell based on the preference value of the
neighbouring cells. In Figure 27, it can be seen that most of the
visited cells are visited 5–6 times, but there are a large number of
unvisited cells.

Figure 23. Cell visitedness ratio of the presented methods.

Figure 24. Number of visits to each cell (method presented in Section 5.2).

Figure 25. Number of visits to each cell (method presented in Section 5.3);
the preference values shown in this figure are the original values, not the
decreased values.

Table 1. The number of steps needed when applying different methods.

Method section number 5.2 5.3 5.4 5.5 5.6 5.7

Number of steps 57 56 30 57 57 42

Number of unvisited cells 1 0 2 5 8 0

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 23

Preference- and visitedness-based traversal with additional preference
values

In Figure 28, it can be seen that due to the application of
additional preference values fewer cells are visited, but they are
visited 6 times. This algorithm (Section 5.6) navigates to the most
preferred location (there was an additional preference applied
with a range of 5 and a value of 5 in the cell with index 12) in the
shortest possible route (these cells are only visited once), then it
only moves around the preferred area.

Preference- and visitedness-based traversal with additional preference
values and dynamic preference

When applying dynamic preference (Section 5.7), all the cells
are visited, and each cell is visited a maximum of 3 times instead
of 5–6 times (Figure 29).

7.4. Cost function

The algorithm can decide whether a free parking space is
suitable or not based on a cost function. The defined cost
function is based on two factors: the driven-route length and
distance from the preferred location.

The estimated route length of a method depends on the step
number; the higher the step number, the longer the route length
(see Table 2). The route length is measured in pixels (the real
distance depends on the graphic scale of the map).

The other aspect of cost function is the distance from the
preferred location. The distance is calculated at every step, and it
depends strongly on the traversal method. The minimum
distance from the preferred location is 50 pixels in this example.

Visitedness- and preference-based traversal

This method (Section 5.2) visits the unvisited cells first, only
reaching the possible minimum distance 3 times during the
traversal. It can be seen in Figure 30 that the distance is between
180 and 330 pixels most of the time.

Visitedness- and preference-based traversal with dynamic preference

Figure 31 shows that the shape of the distance function is
similar to the function in Figure 30. This function also has three
minimum points due to dynamic preference (Section 5.3); only
the visiting order of the cells is different, and the unvisited cells
are also visited.

Figure 26. Number of visits to each cell (method presented in Section 5.4);
the preference values shown in this figure are the original values, not the
decreased values.

Figure 27. Number of visits to each cell (method presented in Section 5.5).

Figure 28. Number of visits to each cell (method presented in Section 5.6).

Figure 29. Number of visits to each cell (method presented in Section 5.7);
the preference values shown in this figure are the original values, not the
decreased values.

Table 2. The route length of each method.

Method section number 5.2 5.3 5.4 5.5 5.6 5.7

Number of steps 57 56 30 57 57 42

Route length 6752 6608 3184 6555 6671 4379

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 24

Visitedness- and preference-based traversal with dynamic preference
while avoiding unnecessary cells

This method (Section 5.4) avoids the cells that have no
parking spaces next to them, so the step number is lower than in
the previous methods. It can be seen in Figure 32 that the
traversal visits the cell nearest to the preferred location only once,
but the length of this traversal is much shorter due to the smaller
number of steps.

Preference- and visitedness-based traversal

This method (Section 5.5) visits cells with a high preference
value more often. The preferred location is far from the initial
cell, so it has a high distance value. Without an additional
preference value, the algorithm also visits the preferred location
5 times, as can be seen in Figure 33.

Preference- and visitedness-based traversal with additional preference
values

By applying additional preference values (Section 5.6), the
traversal reaches the minimal distance from the preferred
location 6 times (Figure 34). It can also be seen that the traversal
repeats the same path, as one part of the function is repeated 5
times.

Preference- and visitedness-based traversal with additional preference
values and dynamic preference

As a result of dynamic preference (Section 5.7), the cells that
are further from the preferred location are also visited. The
traversal has only three minimum points (Figure 35) because
when a cell becomes visited, the preference value of this cell is
decreased.

Figure 30. Distance from preferred locations (method presented in Section
5.2).

Figure 31. Distance from preferred locations (method presented in Section
5.3).

Figure 32. Distance from preferred locations (method presented in Section
5.4).

Figure 33. Distance from preferred locations (method presented in Section
5.5).

Figure 34. Distance from preferred locations (method presented in Section
5.6).

Figure 35. Distance from preferred locations (method presented in Section
5.7).

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 25

8. HANDLING MULTI-STOREY CAR PARKS

As there is a considerable lack of free parking spaces in city
centres, an increasing number of multi-storey car parks have
been constructed to ensure there are enough free parking spaces
to meet demand. The traversal of these car parks is similar to
those in the presented methods.

The storeys of a multi-storey car park can be handled
individually. This means that the traversal of each floor should
be planned independently from the other floors, with the only
extra requirement being the minimising of the transition between
levels. To plan a traversal of each floor, the map of the floor must
be known. Some floors are preferred over others, so these floors
should be traversed first. If there is no free parking space on the
preferred floor, the driver must either go around again or go to
another floor.

The traversal to another floor can be forced so that the
preference values of all the cells can be set to zero except for the
cell representing the ramp to the other floor, which has a high
preference value with a large range. Figure 36 shows the map of
the first floor of a car park, and Figure 37 shows its second floor.
The car park entrance and the ramp to the next floor are also
indicated on the maps. The maps of the floors are the same, with
only different entrance and exit locations.

The planned traversals for the whole car park can be seen in
Figure 38 to Figure 40. There are no additional preference values
during the traversal, and the traversal is planned based on
visitedness and preference, with dynamic preference values. The
traversal of the first floor (Figure 38) is much longer than the
traversal of the second floor (Figure 40). The first floor can be
traversed in 56 steps, but the second floor needs only 33 steps to
be traversed. The traversal method of the floors is the same, only
the entrance locations are different. This example shows how the
traversal depends on the location of the entrance point.

9. CONCLUSION

As searching for a free parking space is a time-consuming
task, the aim of this paper is to design different car park
exploration strategies.

The implemented algorithms used the core concepts of CPP
algorithms, which is possible because the car park exploration
problem is similar to CPP problems. CPP algorithms are used to
plan the paths of vacuum-cleaner robots, lawnmower robots and
robots for different purposes, which are designed to reach every
free point of a configuration in the shortest possible time while
avoiding obstacles. During car park exploration, the vehicle does
not have to reach every free point of the map, it only has to drive
by all the possible free parking spaces.

The car park map is decomposed by using trapezoidal cell
decomposition. This method leads to cells with large areas, and
the planned traversal contains reversals. If the map is

decomposed using both 𝑥 and 𝑦 axes, the created cells are
smaller, and every cell has only one neighbouring cell in each
direction. In this case, the traversal can take personal preferences

Figure 36. Map of the first floor.

Figure 37. Map of the second floor.

Figure 38. Traversal of the first floor.

Figure 39. Traversal of the first floor to the exit ramp.

Figure 40. Traversal of the second floor.

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 26

into account by using the wavefront algorithm. The distance
values can be modified in order to attract the traversal to a given
location (e.g. entrances, lifts, etc.).

The traversal can be planned by taking the preference values
and the visitedness of the cells into account. The first method
presented only takes the preference values into account, so the
traversal does not visit every cell on the map, only the ones with
high preference values. Another method chooses the next cell
based on the preference value, but in case of equal preference
values, the next cell is an unvisited one. The third wavefront
algorithm-based traversal is based on visitedness and preference,
and it visits the unvisited neighbouring cells first. This method is
more likely to visit all the cells on the map.

In order to compare the presented methods, quality
characteristics were defined: step number, the cell visitedness
ratio at each step, the number of visits to each cell and a cost
function. The step number shows how many steps are needed in
order to visit every cell; the algorithm stops if the step number
exceeds a given number. The cell visitedness ratio shows the ratio
of the visited cells at each step. The cost function is based on two
factors: the driven-route length and the weighted sum of the
distance from the preferred locations. If a free parking space is
found, the decision as to whether it is suitable is based on the
cost function.

The implemented algorithms were tested in simulations, the
results of which are detailed in Section 5. The simulation results
demonstrate that the different methods can be used in different
situations. The visitedness- and preference-based traversals visit
nearly every cell on the map. If dynamic preference is applied,
there is a higher chance that every cell becomes visited. It is also
possible that there are cells that do not need to be visited. In this
case, their preference value can be changed to 0, and they are
marked as visited at the beginning. These cells only become
visited when the traversal passes through them to reach other
cells. Visitedness- and preference-based methods should be used
when it is important to find a free parking space as soon as
possible. These methods visit the cells with high preference
values more frequently. If additional preference values are
applied, the traversal moves around the preferred area. If
dynamic preference is applied, the traversal visits the preferred
cells first, then goes further away from the preferred area.
Preference- and visitedness-based methods should be used if it
is important to park near the preferred location.

Future work will include testing the implemented methods in
a real environment and handling situations in which multiple
vehicles are searching for free parking spaces at the same time.

ACKNOWLEDGEMENT

The research reported in this paper and carried out at the
Budapest University of Technology and Economics has been
supported by the National Research Development and
Innovation Fund (TKP2020 Institution Excellence Subprogram,
Grant No. BME-IE-MIFM) based on the charter issued by the
National Research Development and Innovation Office under
the auspices of the Ministry for Innovation and Technology.

REFERENCES

[1] Faheem Zafari, S. A. Mahmud, G. M. Khan, M. Rahman, H. Zafar,
A survey of intelligent car parking system, J. of Applied Research
and Technology 11 (2013) pp. 714-726.
DOI: 10.1016/S1665-6423(13)71580-3

[2] F. Al-Turjman, A. Malekloo, Smart parking in IoT-enabled cities:
a survey, Sustainable Cities and Society, Volume 49 (2019), pp.
2210-6707.
DOI: 10.1016/j.scs.2019.101608

[3] A. B. Ádám, L. Kocsány, E. G. Szádeczky-Kardoss, V. Tihanyi.
Parking lot exploration strategy, Proc. of the 19th IEEE Int.
Symp. on Computational Intelligence and Informatics and the 7th
IEEE Int. Conf. on Recent Achievements in Mechatronics,
Automation, Computer Sciences and Robotics (CINTI-MACRo),
Szeged, Hungary, 14-16 November 2019, pp. 000169-000174.
DOI: 10.1109/CINTI-MACRo49179.2019.9105160

[4] A. Athira, S. Lekshmi, P. Vijayan, B. Kurian, Smart parking system
based on optical character recognition, Proc. of the 3rd
Int. Conf. on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 23-25 April 2019, pp. 1184-1188.
DOI: 10.1109/ICOEI.2019.8862517

[5] Parkl Digital Technologies Kft, Parkl innovative parking, 2020.
Online [Accessed 15 September 2021]
https://parkl.net/hu/

[6] Smart Lynx Kft, Parker, 2020. Online [Accessed 15 September
2021]
https://smartlynx.hu/

[7] E. Szádeczky-Kardoss, B. Kiss, Designing a tracking controller for
passenger cars with steering input, Period. Polytech. Elec. Eng. 52
(2008) pp. 137-144.
DOI: 10.3311/pp.ee.2008-3-4.02

[8] E. Szádeczky-Kardoss, B. Kiss, Continuous-curvature paths for
mobile robots, Period. Polytech. Elec. Eng. 53 (2009) pp. 63-72.
DOI: 10.3311/pp.ee.2009-1-2.08

[9] E. Galceran, M. Carreras, A survey on coverage path planning for
robotics, Robotics and Autonomous Systems 61 (2013) pp. 1258-
1276.
DOI: 10.1016/j.robot.2013.09.004

[10] R. Bellman, Dynamic programming treatment of the travelling
salesman problem, J. ACM 9 (1962) pp. 61-63.
DOI: 10.1145/321105.321111

[11] S. Kumar Ghosh, Approximation algorithms for art gallery
problems in polygons and terrains, in: WALCOM: Algorithms and
Computation. M. S. Rahman, S. Fujita (editors). Springer, Berlin,
Heidelberg, 2010, ISBN 0302-9743, pp. 21-34.

[12] W. P. Chin, S. Ntafos, Optimum watchman routes, Information
Processing Letters 28 (1988) pp. 39-44.
DOI: 10.1016/0020-0190(88)90141-X

[13] H. Choset, E. Acar, A. A. Rizzi, J. Luntz, Exact cellular
decompositions in terms of critical points of morse functions,
Proc. of the IEEE Int. Conf. on Robotics and Automation, San
Francisco, CA, USA, 24-28 April 2000, pp. 2270-2277.
DOI: 10.1109/ROBOT.2000.846365

[14] M. A. Akkus, Trapezoidal cell decomposition and coverage,
Middle East Technical University, Department of Computer
Engineering. Online [Accessed 14 September 2021]
https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng786/hw
3.html

[15] H. Choset, Coverage of known spaces: the Boustrophedon cellular
decomposition, Auton. Robots 9 (2000) pp. 247-253.
DOI: 10.1023/A:1008958800904

[16] S. Raghavan, Distributed algorithms for hierarchical area coverage
using teams of homogeneous robots. 11 2020, Master’s thesis.
Indian Institute Of Technology Madras.

[17] J. Park, Cell decomposition course: introduction to autonomous
mobile robotics, Intelligent Systems and Robotics Lab. Division
of Electronic Engineering, Chonbuk National University. Online
[Accessed 14 September 2021]
https://cupdf.com/document/cell-decomposition-course-
introduction-to-autonomous-mobile-robotics-prof.html

[18] A. Das, M. Diu, N. Mathew, C. Scharfenberger, J. Servos, A.
Wong, J. Zelek, D. Clausi, S. Waslander, Mapping, planning, and
sample detection strategies for autonomous exploration, J. of Field
Robotics 31 (2014), pp. 75-106.
DOI: 10.1002/rob.21490

https://doi.org/10.1016/S1665-6423(13)71580-3
https://doi.org/10.1016/j.scs.2019.101608
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105160
https://doi.org/10.1109/ICOEI.2019.8862517
https://parkl.net/hu/
https://smartlynx.hu/
https://doi.org/10.3311/pp.ee.2008-3-4.02
https://doi.org/10.3311/pp.ee.2009-1-2.08
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1145/321105.321111
https://doi.org/10.1016/0020-0190(88)90141-X
https://doi.org/10.1109/ROBOT.2000.846365
https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng786/hw3.html
https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng786/hw3.html
https://doi.org/10.1023/A:1008958800904
https://cupdf.com/document/cell-decomposition-course-introduction-to-autonomous-mobile-robotics-prof.html
https://cupdf.com/document/cell-decomposition-course-introduction-to-autonomous-mobile-robotics-prof.html
https://doi.org/10.1002/rob.21490

ACTA IMEKO | www.imeko.org September 2021 | Volume 10 | Number 3 | 27

[19] M. Mcnally, Walking the grid, Robotics 52 (2006), Pages 151–155.
Online [Accessed 20 September 2021]
https://dl.acm.org/doi/pdf/10.5555/1151869.1151889

[20] A. B. Ádám, L. Kocsány, E. G. Szádeczky-Kardoss, Cell
decomposition based parking lot exploration, Proc. of the
Workshop on the Advances of Information Technology,
Budapest, Hungary, 30 January 2020, pp. 5-12.

[21] Y. Gabriely, E. Rimon, Spiral-stc: an on-line coverage algorithm
of grid environments by a mobile robot, Proc. of the IEEE Int.

Conf. on Robotics and Automation, Washington, DC, USA, 11-
15 May 2002, pp. 954-960.
DOI: 10.1109/ROBOT.2002.1013479

[22] Y. Gabriely, E. Rimon, Competitive on-line coverage of grid
environments by a mobile robot, Computational Geometry 24
(2003) pp. 197-224.
DOI: 10.1016/S0925-7721(02)00110-4

https://dl.acm.org/doi/pdf/10.5555/1151869.1151889
https://doi.org/10.1109/ROBOT.2002.1013479
https://doi.org/10.1016/S0925-7721(02)00110-4

