
From Coverage Path Planning to parking lot
exploration

Anna Barbara Ádám, László Kocsány, Emese Gincsainé Szádeczky-Kardoss,
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics
Budapest, Hungary

Email: annadam97@gmail.com, kocsany.laszlo@gmail.com, szadeczky@iit.bme.hu

Abstract—Nowadays, it is getting really difficult to find an
adequate free parking space, as there are more and more vehicles
travelling on the roads. It is especially a difficult task to find a
free parking place in huge parking garages and shopping malls,
because the area of the parking zone is big, and there are a
lot of cars searching for a free space. In some parking lots,
a parking system is installed. These parking systems contain
sensors at every parking space in order to perceive and indicate
the occupancy of the given parking space. Using the signals of
these systems, the vehicles can be navigated directly to the given
parking space, for example using an IoT system. However, most
of the parking lots are not equipped with these parking systems,
so the driver must circumnavigate them, in order to be able
to detect the free parking spaces. For an autonomous vehicle,
a path should be planned, which drives along all the possible
free parking spaces, so that the sensors of the vehicle could
detect them. The parking lot exploration is very similar to the
coverage path planning (CPP) problems. This paper presents
CPP algorithm based parking lot exploration methods, in which
personal preferences can be taken into account, too.

Index Terms—Parking lot exploration, Autonomous vehicle,
Coverage Path Planning, Cell decomposition

I. INTRODUCTION

Nowadays, it is a time-consuming task to find a free parking
space, especially in crowded shopping malls, parking garages,
and in downtown. The main problem is that there is no efficient
exploration strategy to find the most appropriate parking place
in the shortest possible time.

To ease the finding of a free parking space and shorten
the time drivers spend with it, different sensors are installed
in modern parking garages. The installed sensors are mainly
for detecting the presence of a car at the parking space. For
example, magnetic sensors can detect the car body made of
metal, pressure sensors installed in the floor can measure
the weight of the vehicle, ultrasonic or infrared sensors can
determine if something is in the examined area [1]. An IoT
(Internet of Things) system can be built-up based on the
signals of the sensors. The IoT system may also involve mobile
applications, which indicate the free spaces to the driver [2].
The main disadvantage of these systems is the need for extra
infrastructure, as these systems require sensors, power supply,
possibly internet connection and maintenance.

The research was supported by the EFOP-3.6.2-16-2016-00014 and EFOP-
3.6.2-16-2017-00002 projects - financed by the Ministry of Human Capacities
of Hungary.

As most parking lots are not installed with these sensors,
the chauffeur does not know where the free parking spaces
are. Consequently, an explorational path should be planned
around the parking lot in order to drive by all the possible free
parking spaces. There can be preferred places in the parking
lot, like the entrance of the shopping mall, the elevator, etc.
It is manifest to look for parking spaces near the preferred
locations at first and go further if there is no free parking
space. The chauffeur decides whether the free parking space
is acceptable or not based on the distance from the preferred
places and the travelled route length.

The paper is organized as follows: Section II describes
the most common Coverage Path Planning methods, some of
which can be used during parking lot exploration.

Section III proposes the use of rectangular cell decomposi-
tion method, which is derived from trapezoidal cell decompo-
sition. This method creates rectangular cells with smaller area,
so it can be easily used for parking lot exploration.

Section IV presents the method, how wavefront algorithm
can be used in order to plan the traversal of the created cells.
There can be locations with different preferences in the map,
and the preference values assigned to the cells can take this
into account. The final cost function assigned to the cells
determines if a parking space is adequate or not.

Section V derives conclusions from the presented methods,
and presents the possible future work.

II. COVERAGE PATH PLANNING METHODS

The coverage path planning [3] is a group of path planning
methods, in which a robot or vehicle visits all the free places in
a given configuration. The purpose of these methods is to reach
all the free points while avoiding the obstacles on the shortest
path. Coverage path planning is used in many applications,
such as robot vacuum cleaners, lawn mowers, painter robots
and window cleaners. [3]–[5] This paper presents a method,
which explores the parking lot by driving around all of the
possible parking spaces. Parking spaces are considered as
obstacles, so the algorithm only leads through the road surfaces
around them.

A. Cell decomposition based path planning
There are several existing coverage path planning methods.

Some of the methods divide the map into various sized cells.



The exact cellular decomposition [6] methods divide the free
space into cells. The cells do not overlap, and the union of
them covers the whole free space. One of the most commonly
used exact cellular decomposition methods is trapezoidal cell
decomposition. This method divides the map containing polyg-
onal obstacles into trapezoidal or triangular cells. This method
can only be used in case of polygonal obstacles, because the
borders of the cells are created by extending rays from the
vertices of the obstacles.

Boustrophedon (greek: ”ox turning”) decomposition [7]
divides the map into larger cells, than trapezoidal cell decom-
position, as this method only extends rays from the entry and
exit points of the obstacles.

In Morse decomposition [6] critical points of Morse func-
tions indicate the location of cell boundaries. A Morse function
is a smooth function with only non-degenerate critical points.

The greedy convex polygon decomposition [8] divides the
map into convex polygonal cells. There are two types of cuts:
a single cut is a cut from a noncovex vertex to an existing
edge or another cut, cutting two nonconvex vertices is called
matching cut. First, the algorithm greedily searches for all the
nonconvex vertices in order to make the matching cuts, then
it makes single cuts for the unmatched nonconvex vertices.
The partition edges come out from the set of the cuts and the
boundary edges.

After creating the cells, the adjacency matrix of the cells
can be created. Two cells are adjacent, if they have a given
number of common points. It is possible to traverse from one
cell to another if they are adjacent. The purpose is to visit all
the cells in the map, but visit one cell only once. When the
order of the cells is created, the traversal inside the cell should
be planned.

B. Grid based path planning

Other coverage path planning methods are based on same-
sized cells, called grid. The grid-based methods firstly divide
the map into smaller, same-sized cells, then classifies the cells
into two groups: the ones, which have no obstacles in them,
and the others which contains any point of the obstacles.

The wavefront algorithm [3] needs a start and a goal cell.
A distance value is assigned to each cell, starting from the
goal point. The distance-value of the goal cell is 1, then every
neighboring cell gets one bigger value. The cells are visited
based on the distance values: the unvisited cell with the highest
value is the next cell, if more unvisited cells have the same
distance values, one of them is selected randomly.

The Spiral Spanning Tree Coverage (SpiralSTC) method [9]
divides the map into same-sized cells. The obstacle free cells
build up a graph, whose nodes are the centers of the cells, and
the edges are the lines between the adjacent cell centers. A
spanning tree is built up for this graph. This algorithm divides
every cell into four identical subcells. The cell, which has four
unvisited subcells, is a new cell, and the cell, which has at
least one visited subcell is an old cell. At the beginning every
subcell is unvisited. The algorithm starts at a given starting
cell and marks this cell as an old cell, this cell is the root of

the spanning tree. Then, every neighbor of this cell is tested
in counterclockwise order if it is a new, obstacle free cell.
While the current cell has new, obstacle free neighbors, the
following steps are repeated: a spanning-tree edge is added
from the current cell to the neighboring cell, then move to a
subcell of the neighboring cell by following the right-side and
add the center of the neighboring cell to the tree as a node. If
there is a move-back from the current cell to a subcell of the
parent cell along the right-side of the spanning tree edges, the
algorithm terminates. This algorithm is performed recursively
for each cell in the map.

C. Using coverage path planning methods for parking lot
exploration

The basic ideas of coverage path planning methods can be
used during parking lot exploration. The problem is similar
because the purpose of parking lot exploration is to traverse
every route, which drives by the possible free parking places,
like in coverage path planning the planned path goes through
all the free points of the workspace. The main difference
is the following: during the parking lot exploration, it is
not necessary to visit every obstacle free point. Planning the
traversal of the cells is enough for the exploration, the traversal
inside each cell is not needed to be planned.

The main idea is to divide the map into smaller cells,
then plan a traversal, which goes through all the cell and
minimizes reversals. The solution that seems the best, is to
use the trapezoidal cell decomposition, as most of the maps
consist of polygonal obstacles, so this method is applicable.
For planning the traversal of the cells, the wavefront algorithm
can be used with a little modification: the cells are treated as
grid and the start and goal cells are the same. The advantage
of this method is that, the distance values can be modified
in order to take personal preferences into consideration. The
details of this method can be found in the following sections.

III. RECTANGULAR CELL DECOMPOSITION

Trapezoidal cell decomposition can be used in polygonal
environments, but it is not a strict requirement, as most of the
parking lots consist of polygonal obstacles. If there are non-
polygonal obstacles in the map, trapezoidal cell decomposition
can be applied after preprocessing, e.g. using the bounding
boxes of the obstacles. By applying the trapezoidal cell
decomposition, the map is only decomposed by x or y axis. It
is more advantageous to create cells with smaller areas, so it
is manifest to decompose the map by x and y axes, too. The
intersections of the cells decomposed by x and y axes make
up a new decomposition (see Fig. 1a-1c). This decomposition
leads to rectangular cells with smaller areas. [10]

Another advantage of this method is that every cell has only
one neighboring cell in each direction, so a traversal can be
planned which avoids reversing when it is possible.
IV. WAVEFRONT ALGORITHM BASED TRAVERSAL OF THE

CELLS

Wavefront algorithm can be used in order to determine the
traversal of the cells [10], [11]. Wavefront algorithm is applied



(a) Decomposition along x axis

(b) Decomposition along y axis

(c) Intersections of the cells from decompositions along x and
y axis

Fig. 1: Rectangular cell decomposition (black areas represent
the obstacles and the colorful areas represent the road surfaces)

in grid-based Coverage Path Planning. Grid is originally built
up from same-sized cells, so in this approach the decomposed
map can be treated as a grid, the only difference is the fact, that
the cells are of different size. The algorithm assigns distance
values to the cells: it assigns 0 to the start cell, and assigns one
bigger value to the neighboring cells recursively until there are
unmarked cells left. An example of the distance values can be
seen in Fig. 2.

Preference values can be added to distance values (see
Section IV-A) and various exploration strategies can be used
(see Section IV-B-IV-D).

3

4

5

6

7

2

4

6

0

1

2

3

4

5

2

4

6

4

3

4

5

6

7

4

6

8

5

6

7

8

9

START

Fig. 2: Distance values assigned to the cells

3

4

5

6

7

2

4

6

0

1

2

3

4

5

2

4

6

4

3

4

5

6

7

4

6

8

5

6

7

8

9

+1 +2

+1

+1

+3

+1

+1

+1

+2

+3

+4

+3

+1

+3

+1

+2

+1
+1+2

START

Preferred cell

Fig. 3: Distance values and additional preference values when
applying additional preference (value of 4 and range of 4),
normal numbers represent the distance values, bold numbers
represent the additional preference values

A. Preference assigned to cells

Some locations are preferred over others, therefore the
above-mentioned distance values can be modified so that the
more preferable locations are visited first and more frequently.
A preference value is added to the distance value of the cells
which are near to the preferred location. The preference value
is based on personal preferences (e.g. entrances, elevators in
shopping malls). The added preference value attracts the path
from a given range.

The cell, which is the nearest to the preferred location gets
the maximum of the preference value, and every neighboring
cell gets one smaller preference value. Cells, which are outside
the given range do not get additional preference value (see Fig.
3).

It is possible, that more than one cell is preferred. In this
case, the additional preference values can overlap, so a cell,
which is in the range of more preferred cells get the sum of
the preference values. Furthermore, it is possible that some
locations are to avoid, so negative preference values are also
permitted, which toss the path away from them.

B. Preference based traversal

The traversal starts from the starting point and the wavefront
algorithm firstly visits those neighboring cells, which have the



(a) Preference value determines the fol-
lowing cell

(b) The testing order of the cells deter-
mines the following cell

Fig. 4: The numbers represent the preference values of the
cells, there are visited (v) and unvisited (u) neighboring cells,
the following cell is colored red when applying preference
based traversal

highest preference value.
This algorithm also tries to avoid reversing, so the reverse

direction is the least preferred direction. If a cell has adjacent
cells of the same preference value, they are visited in the
following order: left, right, upper, lower neighboring cell, so
a lower priority is based on the directions (see Fig. 4). This
method leads to a traversal, in which some of the cells may
remain unvisited, but cells with high preference value become
visited, and the planned path circle around these cells, until a
free parking space is found.

C. Preference and visitedness based traversal

This algorithm mainly differs from the one introduced in
Subsection IV-B in the management of adjacent cells with
the same preference value. This algorithm also visits those
neighboring cells first, which have the highest preference value
and tries to avoid reversing. Though, if a cell has adjacent
cells of the same preference value, the unvisited one will be
the following cell. The visitedness is tested in the following
order: left, right, upper, lower neighboring cell. The traversal
visits the highly preferred cells more frequently, but in this
case the lower priority is based on the visitedness of the cells.

(a) Preference value determines the fol-
lowing cell

(b) The visitedness of the cells determines
the following cell

Fig. 5: The numbers represent the preference values of the
cells, there are visited (v) and unvisited (u) neighboring cells,
the following cell is colored red when applying preference and
visitedness based traversal

Fig. 6: Example of adjacency graph traversal in a map , there
was added preference value in the cell, marked by a red circle,
the order of the cells is based on preference and visitedness

So the unvisited one of the neighbors with the same preference
value will be visited (see Fig. 5). Fig. 6 shows an example of
the traversal.

D. Visitedness and preference based traversal

The algorithm firstly visits the unvisited neighbors of a cell.
If a cell has more than one unvisited neighboring cell, the next



Fig. 7: Example of adjacency graph traversal in a map,
red arrows represent the backtracks, there were no added
preference values during the traversal, the order of the cells is
based on visitedness and preference

cell is the one with highest preference value.(See fig. 8.) This
algorithm plans a traversal, which firstly traverses the unvisited
neighbors of the cells. Cells with high preference values are
visited more frequently, but cells remain unvisited less often.
This algorithm avoids reversals, when it is possible, too. Fig.
7 shows an example of a traversal.

E. Make the traversal repeatable

The traversals generated by the presented methods do not
lead back to the initial cell. [10] Though, it often occurs, that
there are no free parking spaces in a given parking lot, so in
this case, the traversal should be repeated, until an adequate
free parking space is found. In order that the traversal could
be repeated, a path from the final cell to the initial cell must
be planned. It can be realized by assigning a high preference
value to the initial cell with a large range, in order to attract
the path there from any cell. Another possible solution is to
treat the final cell as the initial cell and regenerate the traversal
this way.

F. Modifying the preference values during traversal

It is possible to modify the preference values during the
exploration. It is a manifest solution to reduce the preference
value of the cell by 1, when a cell is visited. This leads to a
traversal, in which the visited cells attract the route less, so
there is a bigger chance that the unvisited cells become visited.
This traversal revisits the visited cells less frequently, so this
solution is not applicable in cases, when the driver would like
to park in a given position at all events.

G. Cost of the traversal

The goal of the parking space searching is to find a free
parking space near to the preferred areas as soon as possible.
Usually, in parking lots, it is very difficult to find a free parking
space near to the appointed positions, so if the driver insists
on the location, it is possible, that multiple rounds are needed
around the parking lot. So there is a trade-off between driven
route length and the nearness of the parking space.

(a) Visitedness of the cells determines the
following cell

(b) The preference value of the cells de-
termines the following cell

Fig. 8: The numbers represent the preference values of the
cells, there are visited (v) and unvisited (u) neighboring cells,
the following cell is colored red when applying visitedness
and preference based traversal

The route length (RouteLength) can be estimated by
summing the distances between the centers of the fol-
lowing cells (Length(Routei)). The nearness (Nearness)
of the parking space is the preference value (prefV ali)
weighted sum of the distances of the preferred locations
(dist(position, prefLoci)). These cost functions are calcu-
lated for each cell during the traversal. The final cost function
(cost) is the weighted sum of the previously mentioned nor-
malized cost functions. The weighting depends on the drivers
preferences: the importance of nearness or shortness of the
driven route.

RouteLength =

N∑
i=1

Length(Routei) (1)

Nearness =

P∑
i=1

prefV ali∑P
i=1 prefV ali

· dist(position, prefLoci)

(2)

cost = α ·RouteLength+ (1− α) ·Nearness (3)

where N is the number of route sections, P is the number of
preferred locations and α is weighting factor.



(a) Map of the parking lot

0 5 10 15 20 25 30 35 40 45

Steps of traversal

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
ou

te
 le

ng
th

Length of route

(b) Route length

0 5 10 15 20 25 30 35 40 45

Steps of traversal

0

200

400

600

800

1000

1200

1400

D
is

ta
nc

e 
fr

om
 p

re
fe

rr
ed

 lo
ca

tio
ns

Distance from preferred locations

(c) Distances from the preferred
location

0 5 10 15 20 25 30 35 40 45

Steps of traversal

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

C
os

t f
un

ct
io

n 
fo

r 
th

e 
so

rt
ed

 c
el

ls

Cost function for the sorted cells

(d) Weighted cost function
(α = 0.9)

0 5 10 15 20 25 30 35 40 45

Steps of traversal

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
os

t f
un

ct
io

n 
fo

r 
th

e 
so

rt
ed

 c
el

ls

Cost function for the sorted cells

(e) Weighted cost function
(α = 0.5)

0 5 10 15 20 25 30 35 40 45

Steps of traversal

400

600

800

1000

1200

1400

1600

1800

2000

C
os

t f
un

ct
io

n 
fo

r 
th

e 
so

rt
ed

 c
el

ls

Cost function for the sorted cells

(f) Weighted cost function
(α = 0.1)

Fig. 9: The subfigures show an example of the cost function
with different α values

If a free parking space is found along the cell, the value of
the final cost function determines whether it is an adequate
parking space or not. A threshold value is needed to be
established by the driver, parking spaces of a lower cost value
are suitable. Fig. 9 shows an example of the cost function of
the traversal shown by Fig. 7. In Fig. 9a the preferred location
is marked with a red X, the example cells are marked with
blue and green X. Fig. 9b shows the driven route length during
the traversal, the values in the example cells are marked with
colorful dots. It can be seen that the most preferable parking
space depends on the α parameter. The smaller the α value
is, the better a nearer parking space is.

V. CONCLUSION AND FUTURE WORK

This paper presented more Coverage Path Planning (CPP)
methods, some of which can be used for parking lot explo-
ration. The main idea of CPP and parking lot exploration is
the same: an area is given, which is needed to be explored. In
CPP every point of the free workspace is needed to be visited,
in contrast, during parking lot exploration, only an exploring

path is needed, which drives by all the possible free parking
places, so there is no need to visit every free point of the road
surface.

An advanced version of trapezoidal decomposition can be
used to divide the map of a parking lot into smaller, rectangular
cells. The traversal of the cells can be planned using the
base idea of wavefront algorithm: a distance value is assigned
to every cell, and neighboring cells with the highest values
are visited first, until all the cells are visited, or a terminal
condition is met.

Since there are more and less preferred parking spaces
in a parking lot, the distance values of the cells should be
modified taking into consideration the preference of their
location. By modifying the distance values, different traversals
can be planned based on only preference, or preference and
visitedness of the cells.

The algorithm decides whether a parking space is adequate
or not based on a cost function. The cost function is built
up from two parts: the driven route length and the distance
between the given parking space and the preferred locations.
These parts can be taken into account with different weighting,
which gives the final cost of a parking space. If the cost of
the current free parking space is below a given threshold, it is
an adequate parking space and the vehicle can park there.

The algorithms were tested in Matlab environment, future
work includes testing in real environment and developing the
algorithm to be able to handle multi-storey car parks.

REFERENCES

[1] Faheem, S.A. Mahmud, G.M. Khan, M. Rahman, and H. Zafar. A
survey of intelligent car parking system. Journal of Applied Research
and Technology, 11(5):714 – 726, 2013.

[2] Fadi Al-Turjman and Arman Malekloo. Smart parking in IoT-enabled
cities: A survey. Sustainable Cities and Society, 49:101608, 2019.

[3] Enric Galceran and Marc Carreras. A survey on coverage path planning
for robotics. Robotics and Autonomous Systems, 61(12):1258 – 1276,
2013.

[4] Sanghoon Baek, Tae-Kyeong Lee, Se-Young Oh, and Kwangro Ju.
Integrated on-line localization, mapping and coverage algorithm of
unknown environments for robotic vacuum cleaners based on minimal
sensing. Advanced Robotics, 25:1651–1673, 01 2011.

[5] Ibrahim Hameed. Coverage path planning software for autonomous
robotic lawn mower using dubins’ curve. 07 2017.

[6] H. Choset, E. Acar, A. A. Rizzi, and J. Luntz. Exact cellular decom-
positions in terms of critical points of morse functions. In Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
volume 3, pages 2270–2277 vol.3, 2000.

[7] Howie Choset. Coverage of known spaces: The boustrophedon cellular
decomposition. Auton. Robots, 9:247–253, 12 2000.

[8] Arun Das, Michael Diu, Neil Mathew, Christian Scharfenberger, James
Servos, Andy Wong, John Zelek, David Clausi, and Steven Waslander.
Mapping, planning, and sample detection strategies for autonomous
exploration. Journal of Field Robotics, 31, 01 2014.

[9] Y. Gabriely and E. Rimon. Spiral-stc: an on-line coverage algorithm of
grid environments by a mobile robot. In Proceedings 2002 IEEE Inter-
national Conference on Robotics and Automation (Cat. No.02CH37292),
volume 1, pages 954–960 vol.1, 2002.

[10] A. B. Ádám et al. Cell decomposition based paring lot exploration. Pro-
ceedings of the Workshop on the Advances of Information Technology,
pages 5–12, 2020.

[11] E. Galceran and M. Carreras. A survey on coverage path planning for
robotics. Robotics and Autonomous Systems, 61(12):1258–1276, 2013.


