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ABSTRACT
In this work, we studyThe present study focused on vision-based end-to-end reinforcement learning on in relation to vehicle control problems, such as lane following and collision avoidance. Our The controller policy presented in this paper is able to control a small-scale robot to follow the right-hand lane of a real two-lane road, while although its training was solelyhas only been carried out in a simulation. Our This model, realiszed by a simple, convolutional network, only relies on images of a forward-facing monocular camera and generates continuous actions that directly control the vehicle. To train train this policy, we used proximal policy optimizzation was used, and to achieve the generaliszation capability required for real performance, we used domain randomiszation was used. We carried outA thorough analysis of the trained trained policy was conducted, by measuring multiple performance metrics and comparing these to baselines that rely on other methods. To assess the quality of the simulation-to-reality transfer learning process and the performance of the controller in the real world, we measured simple metrics were measured on a real track and compared these with results from a matching simulation. Further analysis was carried out by visualizsing salient object maps.
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Introduction	Comment by Proofed: I have made some changes to the language in the abstract to clarify the language and improve the flow. Please check that I have retained your original meaning throughout.
You should note that the first person, e.g. 'we', is not usually used in academic writing. I have therefore made changes here and elsewhere in this paper accordingly. 

Reinforcement learning has been used to solve many control and robotics tasks. H, however, only a handful of papers haves been published so far that apply this technique to end-to-end driving [1]-[7], and. eEven fewer works studies have focused on reinforcement  learning-based driving, trained  only in simulations but and then applied to real-world problems. Generally, bridging the gap between simulation and the real world is an important transfer- learning problem related to reinforcement learning, and it is an unresolved task for researchers.
Mnih et al. [1] proposed a method to train vehicle controller policies that predict discrete control actions based on a single image of a forward-facing camera. Jaritz et al. [2] used WRC6, a realistic racing simulator, to train a vision-based road- following policy. They assessed the policy's generaliszation capability by testing it on previously unseen tracks and on real driving videos, in an open-loop configuration;, but their work did not extend to an evaluation ofn real vehicles in closed-loop control. Kendall et al. [3] demonstrated real-world driving by training a lane-following policy exclusively on a real vehicle, under the supervision of a safety driver. Shi et al. [4] presented research that involveds training reinforcement learning agents in Duckietown, in a similar way to that presented herely to ours,; h however, they mainly focus wased mainly on presenting a method that explaineds the reasoning of behind the trained agents, rather than on the training methods. Also Ssimilarly to our researchthe present study, Balaji et al. [5] presented a method for training a road-following policy in a simulator using reinforcement learning and tested the trained agent in the real world, yet their primary contribution is the DeepRacer platform, rather than the an in-depth analysis of the road- following policy. Almási et al. [7] also used reinforcement learning to solve lane following in the Duckietown environment, similarly to us.but tTheir work differs from ours the present study in using the use of an off-policy reinforcement learning algorithm (dDeep Q-nNetworks (DQNs) [8]);, while we usein this study an on-policy algorithm (pProximal pPolicy oOptimization [9]) is used, which achieves significantly better sample efficiency and shorter training times. Another important difference is that Almási et al.they appliedy a hand-crafted colorcolour threshold-based segmentation to the input images, whereas our the method presented here takes the ‘"raw’" images as inputs, which allows for a more robust real performance.	Comment by Proofed: You have requested British English for this document, but you appear to have used the American spelling here. I have made the appropriate changes here and in the rest of the paper. Just to note, I have left ‘proximal policy optimization’ as it is, i.e. with the American spelling, because it is the specific name of a reinforcement learning algorithm. 

Click here for more information on spelling conventions in US and UK English.
	Comment by Proofed: I assume this is what you mean here. Please check.
	Comment by Proofed: UK and Australian English prefer the use of 'single quotation marks' (or 'inverted commas') for quotes, reserving "double quotation marks" for a quote within a quote. 

Click here for more information on using quotation marks.

This paper is an extended version of our the authors’ original contribution [10]. It includes the results of the 5th AI Driving Olympics [11] and aims to improve on the description of our the methods. In both works, we study vision-based end-to-end reinforcement learning on relating to vehicle control problems is studied and propose a solution is proposed that performs lane following in the real world,, using continuous actions,, without any real data provided by an expert (as in [3]). Also, we perform validation of the trained policies in both the real and simulated domains is conducted. 
The training and evaluation code for this paper is available on GitHub[footnoteRef:1]. [1:  https://github.com/kaland313/Duckietown-RL] 

Methods
In this study, aWe trained a neural- network-based controller was trained that takes images from a forward-looking monocular camera and producess control signals to drive a vehicle in the right-hand lane of a two-way road. The vehicle to be controlled wasis a small differential-wheeled mobile robot, a so-called Duckiebot, which is part of the Duckietown ecosystem [11], a simple and accessible platform for research and education on mobile robotics and autonomous vehicles.  The primary objective wasis to travel as far as possible under within a given time, without leaving the road. Lane departure is was allowed, but it is not preferred. Despite Although the latest version of the Duckiebots being is equipped with wheel encoders, ourfor this  method, the vehicle is was solely reliant on data from the robot's forward-facing monocular camera.
[bookmark: _Ref61709991] Reinforcement learning algorithm
In reinforcement learning, an agent interacts with the environment by taking  action, then the environment returns  observation and  reward. The agent computes the next   action based on  and so on. The policy is the parametric controller of the agent, and it that is tuned during the reinforcement learning training. Sequences of actions, observations, and rewards (so-called  trajectories) are used to train the parameters of the policy to maximisze the expected reward over a finite number of steps (agent–-environment interactions). For vehicle control problems, the actions are the signals that control the vehicle, such as thee.g., steering and throttle, and the observations are are the sensor data about relating to the environment of the vehicle, e.g.,such as the camera, lidar data, or higher-level environment models. In this research, the observations are were images from the robot's forward-facing camera, and the actions are were the velocity signals for the two wheels of the robot.
Policy optimiszation algorithms are on-policy reinforcement learning methods that optimisze the parameters  policy based on the  actions and the  reward received for them;.  denotes the trainable parameters of the policy. On-policy reinforcement learning algorithms optimisze the  policy based on trajectories in which the actions were have been computed by . In contrast to them, off-policy algorithms (such as DQNs [8]) compute actions based on the estimate of the action-value function of the environment, which that they learn based onusing data of from many a large number of (earlier) trajectories, which makinges these algorithms less stable in some environments.   In policy optimiszation algorithms, the  policy is stochastic, and in the case of deep reinforcement learning, it is implemented by a neural network, which is updated using a gradient method. The policy is stochastic because, instead of computing the actions directly, the policy network predicts the parameters of a probability distribution (see  and  ion Figure 1) that is sampled to acquire the  predicted actions (here, predicted refers to this action being predicted by the policy). 
In the present study, Toto train the policy, we used the proximal policy optimization algorithm [9] was used because offor  its stability, sample-complexity, and ability to take advantage of multiple parallel workers. 
Proximal pPolicy oOptimization performs the weight updates using a special loss function to keep the new policy close to the old, thereby improving the stability of the training. Two loss functions were proposed by Schulman et al. [9]:
	,
	(1)

	,	Comment by Proofed: The journal's style guide requires equations to be punctuated because they are considered to be part of the sentence. 

	(2)


where  and  refer to the clipping function and the Kullback–Leibler (KL)- divergence, respectively, while  is calculated as the generaliszed advantage estimate [12]. In these loss functions,  is usually a constant usually in the  range, while  is an adaptive parameter, and 
	
	(3)


We used aAn open-source implementation of proximal policy optimization from RLlib [13] was used, which performs the gradient updates based on the weighted sum of these loss functions. The pPseudo code and additional details for the algorithm are provided in the Appendix.
[image: ]
[bookmark: _Ref61642790]Figure 1. Illustration of the policy architecture with the used notations used. The agent is represented jointly by the ‘"Policy nNetwork’" and ‘"Sampling action distributions"’ blocks together;. : ‘"raw’" observation, : pre-processed observation, : predicted action, : post-processed action.
Policy architecture
The controller policy is was realiszed by a shallow (4-layer) convolutional neural network. Both the policy and the value network used the architecture presented by Mnih et al. [1], with the only difference of usingbeing the use of linear activation ion the output of the policy network. No weights are were shared between the policy and the value network. We consider thisThis policy is considered to be end-to-end because the only learning component is the neural network, which directly computes actions based on observations from the environment.
Some pre- and post-processing wasis applied to the observations and actions respectively, but these only performed very simple transformations (explained in the next paragraph and Section 2.3). The aim of these pre- and post-processing steps is was to transform the  observations and  actions into representations that enabled faster convergence without losing any important features in the observations or restricting necessary actions.
The input of the policy network is consisted of the last three observations (images) scaled, cropped and stacked (along the depth axis). The observations returned by the environment ( on Figure 1) are were 640 × 480 (width, height) RGB images, whose the top third of which mainly showeds the sky, which was therefore is cropped. Then, theThe cropped images are were then scaled down to 84 × 84 resolution (note the uneven scaling), which are were then stacked along the depth axis, resulting in 84 × 84 × 9 input tensors ( ion Figure 1). The last three images are were stacked to provide the policy with information about the robot's speed and acceleration.
We experimented with mMultiple action representations were experimented with (see Section 2.3). Depending Based on these representations, the policy outputs  predicted an action vector of two or a scalar value that controlleds the vehicle. The policy wasis stochastic, and; therefore, the output of the neural network therefore produceds the  and  parameters of a multivariate diagonal normal distribution. During training, this distribution is was sampled to acquire the   actions, which improveds the exploration of the action space. During these evaluations, the sampling step is was skipped by using the predicted  mean value as the  policy output.
[bookmark: _Ref61642478]Action representations
The action post-processing action step transformeds the  predicted actions, which can could then be implemented using many representations, to  wheel velocities (see Figure 1). The vehicle to be controlled wais a differential-wheeled robot,; therefore the most general action representation is was therefore to directly compute the angular velocities of the two wheels as continuous values in the  range (where  and  corresponded to rotating forward and backward rotation at full speed). However, this action space allowedws for actions that are were not necessary for the maneuversmanoeuvres we examined in this paper. Moreover, as by allowing unnecessary actions, the reinforcement learning algorithm must ruled these out unnecessary actions, potentially making the exploration of the action space was potentially made more difficult, and  therefore increasing the number of steps required to train an agent was therefore increased. 	Comment by Proofed: The meaning here is unclear. Do you mean 'the most appropriate'? Please clarify. 
	Comment by Proofed: I have made some changes here to clarify the language. Please check that I have retained your original meaning. 

Several methods can be used to constrain and simplify the action space, such as discretiszation, clipping some actions, or mapping to a lower-dimensional space.
 Most previous works studies [1],[2],[5],[7] have used discrete action spaces, thus the neural network in these policies selecteds one from a set of hand-crafted actions (steering, throttle combinations), while Kendall et al. [3] utiliszed continuous actions, as has been used win this studye do.
In order to test the reinforcement learning algorithm's ability to solve the most general problem, we experimented with multiple action mappings and simplifications of the action space were experimented with. These are described in the following paragraphs.	Comment by Proofed: The meaning here is unclear. Please clarify. Perhaps ‘to address general tasks’?

Wheel Vvelocity: Wheel velocities The policywere a direct directly output of the policys wheel velocities;, , therefore 
Wheel vVelocity -  - pPositive oOnly: Only allow positive wheel velocities, were allowed because only these are were required to move forward. Values predictedpredicted outside the  interval are were clipped:. 
Wheel vVelocity -  – bBraking: Wheel velocities could were still only able to fall within the  interval, but the predicted values are were interpreted as the amount of braking from the maximum speed. The main differentiating factor from the ‘pPositive oOnly’ option is was the bias towards moving forward at full speed:. 

Steering: Predicting a scalar value that is was continuously mapped to combinations of wheel velocities. The 0.0 scalar value correspondss to going moving straight (at full speed), while −-1.0 and 1.0 refer to turning left or right, with one wheel completely stopped and the other one going at full speed. Intermediate values are are computed using linear interpolation between these values. The speed of the robot is always maximal for a particular steering value. Below is theA formula that implements this action mapping: 

[image: ]
[bookmark: _Ref61611454]Figure 2. Explanation of the proposed oOrientation reward:. (a) explains , (b) shows how the desired orientation depends on the lateral error, (c) shows the  function, while and (d) shows provides some examples of desired configurations.
Reward shaping
The reward function is a fundamental element of every reinforcement learning problem, as it serves the important role of converting a task from a textual description to a mathematical optimiszation problem. The primary objective for the agent is to travel as far as possible under within a given time in the right-hand lane;, therefore, we propose two rewards that promote this behaviorbehaviour were proposed. 
Distance traveledtravelled: The agent’s reward was is directly rewarded proportionally to the distance it moved further along the right-hand lane under everyat each step. Only longitudinal motion is was counted, and only if the robot stayed in the right-hand lane.	Comment by Proofed: Please check that my changes here reflect your intended meaning. 

Orientation: The agent is was rewarded if it is was facing towards and movinges in a certainthe desired orientation, which is was determined based on its lateral position. In simple terms, it received the largest is rewarded the most if it faceds towards the centercentre of the right-hand lane (some example configurations are shown ion Figure 2.d). A term proportional to the angular velocity of the faster moving wheel is was also added to encourage fast motion.
This reward is was calculated as , where  are the orientation and velocity-based components (explained below), while the  constants scale these to [-1,1].  are the orientation and lateral error from the desired trajectory, which is the centercentre line of the right-hand lane (see fig. Figure 2.a).
The orientation-based term is was calculated as , where  is the desired orientation, calculated based onusing the lateral distance from the desired trajectory (see fig. Figure 2.b for the illustration of ). The  function achieves that the promotion of the  error is promoted largely, while an error larger than this leads to a small negative reward (a plot of  is shown ion fig. Figure 2.c):.
	
	(4)


wWhere the and  hyper-parameters were are selected arbitrarily.
The velocity-based component is was calculated as  to reward an equally high- speed motion equally in both straight and curved sections. In the curved sectionss, only the outer wheel can was able to rotate at maximal speed, while on a straight road, both of themwheels were able to do so..	Comment by Proofed: Is this what you mean here? Please check. 

Simulation- to- reality transfer
To train the agents, we used an open-source simulation of the Duckietown environment was used [14]. It This simulation models certain physical properties of the real environment accurately (dimensions of the robot, camera parameters, dynamic properties, etc.), but several other effects (textures, objects surrounding at the side of the roads) and light simulation are less realistic (e.g. compared to modern computer games). These inaccuracies create a gap between simulation and reality which that makes it challenging for any reinforcement learning agent to be trained only in a simulation but operate in reality.  
To bridge the simulation- to- reality gap, and to achieve the generaliszation capability required for real performance, we used domain randomiszation was used. This involves training the policy in many different variants of a simulated environment, by varying lighting conditions, object textures, the camera,, and vehicle dynamics parameters and, road structures etc. (fsee Figure 3 for examples of domain randomiszed observations see fig. Figure 3). In addition to the ‘"built-in’" randomiszation options of Gym-Duckietown, we this study used trained on a diverse set of maps to train on in order to further improve the agent's generaliszation capability.
[image: ]
[bookmark: _Ref61611538]Figure 3. Examples of domain randomizsed observations.
Collision avoidance
Collision avoidance with other vehicles greatly increases the complexity of the lane-following task. These problems can be solved in different ways, e.g.for example, by overtaking or following from at a safe distance. However, the sensing capability of the vehicle and the complexity of the policy determine the solution it can learn. Images from the forward-facing camera of a Dduckiebot only have a  horizontal field of view;, therefore, the policy controlling the vehicle has no information about objects moving next to or behind the robot. Also, fFor simplicity, in this study, we used the same convolutional network for collision avoidance as for lane following was used, which does not feature a long short-term memoryn LSTM cell or any other sequence modelling component (in contrast to [2]). For these reasons, it is unable to plan long maneuversmanoeuvres, such as overtaking, which also requires side -vision to check if when it is safe to returning to the right-hand lane is safe. Therefore, we trained aThe policy was therefore trained in situations where there is was a slow vehicle ahead, and the agent hads to learn to perform lane following at full speed until it had caughttches up with the vehicle in upfront, then it mustat which point it had to reduce its speed and keep maintain a safe distance to avoid collision.
In these experiments, the wWheel vVelocity - bBraking action representation was used as the policy's output because this alloweds the agent to slow down or even stop the vehicle if necessary (unlike the one we call sSteering action). Both the oOrientation and the dDistance traveledtravelled reward functions were used to train agents for collision avoidance. The former one was supplemented with a term that promoteds collision avoidance, while the latter is was used unchanged. The simulation we used provideds a  penalty if the so-called safety circles of around the two vehicles overlapped. The reward component that promoteds collision avoidance is was calculated based onusing this penalty. If the penalty is decreasingdecreased, which is because the robot wais able to increase the its distance from an obstacle,, the reward term is was proportional to the change of thein penalty.; oOtherwise, it wais 0:.
	.
	(5)


This term wasis added to the oOrientation reward, and intends it aimed to encourage the policy to increase the distance from the vehicle ahead if it got too close. Collisions are were only penalizsed by terminating the episode, without giving any negative rewards.
Evaluation
To assess the performance of the reinforcement learning-based controller, we measured multiple performance metrics in the simulation were measured and compared these against two baselines, one using a classical control theory approach, and the other being human driving.
Survival time () [s]: The time until the robot left the road or the time periodduration of an evaluation episode.
Distance traveledtravelled in ego-lane () [m]: The distance traveledtravelled along the right-hand-side lane under within a fixed time period. Only longitudinal motion is was counted; , therefore tangential movement therefore counteds the most towards this metric.
Distance traveledtravelled both lanes () [m]: Both tThe distance traveledtravelled along the road under within a fixed time period and, but also sections where the agent moved into the oncoming lane counted towards this metric. 
Lateral deviation () [m·s]: Lateral deviation from the lane’s centercentre line integrated over over the time of an episode. 
Orientation deviation () [rad·s]: The robot orientation's deviation from the tangent of the lane centreer line, integrated over the time of an episode. 
	[image: ]
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	[image: ]

	a) Simulated 
	b) Simulated
	c) Real


[bookmark: _Ref61611736]Figure 4. a): Test track used for simulated reinforcement learning and baseline evaluations;. b) and& c): rReal and simulated test track used for the evaluation of the simulation -to- reality transfer.
Time outside ego-lane () [s]: Time spent outside the ego-lane.  
Even thorough Duckietown is intendeds to be a standardiszed platform, it is still under development, and the official evaluation methods and baselines have not been adopted widely in the research community. The AI Driving Olympics provideds a great way opportunity to benchmark our the solution presented here to others;; hhowever, the methods behind these solutions are have not yet been published in the scientific literature. For this reason, we primarily analyze ourthis method was analysed primarily by comparing it to with baselines that we cancould be evaluated under the same conditions.
The classical control theory baseline relies on information about the robot’s relative location and orientation to the centreerline of the lane, which are is available in the simulator. This baseline works by controlling the robot to orient itself towards a point on its desired path ahead and calculating wheel velocities using a proportional-derivative (PD) controller, based on the orientation error of the robot. The parameters of this controller were are hand-tuned to achieve a sufficiently good performance, but more advanced control schemes could offer better results.
In many reinforcement learning problems (e.g. the Atari 2600 games [15]) the agents are compared to human baselines. Motivated by this benchmark, we propose a method to measure how well humans are were able to control Dduckiebots was proposed, which could bewas then used as a baseline. The values shown in Table 1 were recorded by controlling the simulated robot using the arrow keys on a keyboard (therefore via discrete actions), while the observations seen by the human driver were very similar compared to the observations of the reinforcement learning agent.
Methods to improve results at the AI Driving Olympics
We trained ourThe agents in this study were trained to generally solve autonomous driving problems in the Duckietown environment and not to maximisze scores at the AI Driving Olympics. Therefore, some hyperparameters and methods had to be modified to match the competitions' evaluation procedures. We It was found that training on lower frame rates (0.1 ms step time) improved s the scores, even though the evaluation simulation is was stepped more frequently. AlsoIn addition, implementing the same motion blur simulation that is was applied in the official evaluation improveds the results greatly significantly compared with over agents that were trained on non-blurred observations.
Results
Simulation
Even though multiple papers have demonstrated the feasibility of training vision-based driving policies using reinforcement learning, adapting to a new environment still poses many challenges. Due to the high dimensionality of the image-like observations, many algorithms converge slowly and are very sensitive to hyperparameter selection. Our The method presented in this study, using proximal policy optimization, is able to converge to with good lane- following policies in 1- million timesteps, thanks to the high sample -complexity of the algorithm. This training takes 2–-2.5 hours on 5 five cores of an Intel Xeon E5-2698 v4 2.2 GHz CPU and an Nvidia Tesla V100 GPU if 16 parallel environments are used. 
[bookmark: _Ref61611582]Table 1. Comparison of the reinforcement learning agent to with two baselines in simulation.
	Mean metrics over 5 episodes 
	
	RL agent
	PD baseline 
	Human baseline 

	Survival time [s]
	↑
	15
	15
	15

	Distance traveledtravelled both lanes [m]
	↑
	7.1
	7.6
	7.0

	Distance traveledtravelled ego-lane [m]
	↑
	7.0
	7.6
	6.7

	Lateral deviation [m·s]
	↓
	0.5
	0.5
	0.9

	Orientation deviation [rad·s]
	↓
	1.5
	1.1
	2.8


Comparisonng against baselines
Table Table 1 compares our the reinforcement learning agent from this study withto the baselines. The performance of the trained policy is measurable to our the classical control theory baseline, as well as to how well humans are able to control the robot in the simulation. Most metrics indicate similarly good or equal performance, even though the PD- controller baseline relies on high-level data such as position and orientation error, rather than images. 
[bookmark: _Ref61611612]Table 2. Comparing our the method in this study with to other solutions at the AI Driving Olympics
	Author 
	
[s] ↑
	
[m] ↑
	
[m·s] ↓
	
[s] ↓

	A. Kalapos [10], [17] 
	60
	30.38
	2.65
	0

	A. Béres [17] 
	60
	29.14
	4.10
	1.4

	M. Tim [17] 
	60
	28.52
	3.45
	0.4

	A. Nikolskaya 
	60
	24.80
	3.15
	1.6

	R. Moni [17] 
	60
	18.60
	1.78
	0

	Z. Lorincz [17] 
	60
	18.6
	3.5
	0.8

	M. Sazanovich 
	60
	16.12
	4.35
	3.4

	R. Jean 
	60
	15.5
	3.28
	0

	Y. Belousov 
	60
	14.88
	5.41
	9.8

	M. Teng 
	60
	11.78
	2.92
	0

	P. Almási [7], [17] 
	60
	11.16
	1.32
	0


Comparisonng against other solutions at the AI Driving Olympics
Table Table 2 shows the top-ranking solutions of the simulated lane- following (validation) challenge at the 5th AI Driving Olympics. All top-performing solutions are were able to control the robot reliably in the simulation for the time duration of an episode (60 s),; however, the distances traveledtravelled are were different. Our The method in this study is able to control the robot reliably at the highest speed, so it therefore achieves the highest  distance- traveledtravelled value, while also showing good lateral deviation and rarely departing from the ego-lane. 
 Action representation and reward shaping
Experiments with different action representations show that constrained and preferably biased action spaces allow convergence to with good policies (wWheel vVelocity - Bbraking and Ssteering),. Hhowever, more general action spaces (wWheel vVelocity and its cClipped version) can only converge to with inferior policies under that have the same number of steps (see Figure 5). The proposed orientation-based reward function also leads to as as good a final performance as as one that is ‘"trivially’" rewarding based on the distance traveledtravelled;, however, the latter seems to perform better on more general action representations (because policies using these action spaces and trained with the oOrientation reward does not learn to move fast).	Comment by Proofed: Is this what you mean here? Please check. 
	Comment by Proofed: The meaning here was unclear. I have made some changes, but it may need some further clarification. Please check. 
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	a) Orientation reward
	b) Distance travelled reward


[bookmark: _Ref61611681]Figure 5. Learning curves for the reinforcement learning agent with different action representations and reward functions.
Real-world driving
Table 3. Evaluation results of reinforcement learning agent in the real environment and in matching simulations.
	Eval.  Domain
	Mean metrics over 6 episodes   
	
	Domain Rand. Policy 
	Nominal Policy 

	Real
	Survival time [s]
	↑
	 54 
	 45 

	
	Distance traveledtravelled both lanes [m]
	↑
	15.6 
	 11.4 

	
	Distance traveledtravelled ego-lane [m]
	↑
	 7.0 
	 8.4 

	Sim.
	Survival time [s]
	↑
	 60 
	 60 

	
	Distance traveledtravelled [m]
	↑
	15.5 
	 15.0 


To measure the quality of the transfer learning process and the performance of the controller in the real world, we selected performance metrics that wereare easily measurable both in reality and simulation were selected. These were recorded in both domains in matching experiments and compared against each other. The geometry of the tracks, the dimensions, and the speed of the robot are were simulated accurately enough, to evaluate the robustness of the policy against all the inaccurately and not simulated effects and those that were not simulated. Using this method, we tested policies trained in the domain -randomiszed simulation were tested, but also ones as well as those that were trained only in the ‘"nominal’" simulation. This allows for us tothe evaluatione the transfer learning process and the highlighting of the effects of training with domain randomiszation. The real and simulated version of the test track used in this analysis is shown ion Figure 4.b and c. 
During real evaluations, it was generally found, we experienced that under ideal circumstances (no distracting objects outside at the side of the roads and good lighting conditions), the policy trained in the ‘"nominal’" simulation is was able to drive reasonably well. However, training with domain randomiszation ledads to a more reliable and robust performance in the real world.
Table 1 shows the quantitative results of this evaluation. The two policies seemed to perform equally well if comparing themwhen compared based on their performance in the simulation. However, metrics recorded in the real environment show that the policy trained with domain randomizationrandomisation performeds almost as well as in the simulation, while the other policy performeds noticeably worse. The lower dDistance traveledtravelled ego-lane metric of the domain- randomiszed policy is can be explained by the fact thatbecause the vehicle tendeds to drift to the left-hand lane in at sharp turns but returneds to the right-hand lane afterwards, while the nominal policy usually made more serious mistakes. Note that in these experiments the oOrientation -based reward and the sSteering action representation were used, as this configuration learns to control the robot in the least minimum amountnumber of steps and the shortest training time.
An online video demonstrates the performance of our the trained agent from this study: https://youtu.be/kz7YWEmg1Is
An important limitation of ourfor the method presented in this study is that during real evaluations, we had to decrease the speed of the robot had to be decreased to half of the simulated value. The policy evaluations are were executed on a PC connected to the robot via wireless LAN; therefore, the observations and the actions are were transmitted between the two devices at every step. This introduceds delays in the order of 10–-100 ms, which makesmaking the control loop unstable if when the robot is was moving at full speed. However, at half speed, a stable operation can bewas achieved. 
We It was noticed that models trained with motion blur and longer step times for the AI Driving Olympics performed more reliably in the real world, regardless of using whether they used domain randomiszation. However, further analysis and retraining of these agents multiple times is needed to firmly support these presumptions.
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	a)  
	b) 
	c) 
	d) 
	e)  Approximate distance between the vehicles.
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[bookmark: _Ref61611871]Figure 6. Sequence of robot positions in a collision avoidance experiment with a policy trained using the modified oOrientation reward. After  the controlled robot follows the vehicle in front of it fromat a short, but safe distance until the end of the episode (a. (Approximate distance is calculated as the distance between the centercentre points of the robots minus the length of a robot.).
Collision avoidance
Figure 6 demonstrates the learned collision avoidance behaviorbehaviour. In the first few seconds of the simulation, the robot controlled by the reinforcement learning policy accelerates to full speed. Then, as it approaches the slower, non-learning robot, it reduces its speed and maintains approximately an approximately constant distance from the vehicle ahead (see Figure 6).  From the simple, fully-convolutionalfully convolutional network of our this policy, learning, planning, and executing a more complex behaviorbehaviour, such as overtaking, can not be expected. 
[bookmark: _Ref61611814]Table 4. Evaluation results of policies trained for collision avoidance with different reward functions.
	Mean metrics over 15 episodes  
	
	Distance traveledtravelled
	Orientation  

	Survival time (max. 60) [s]
	↑
	46
	52

	Distance traveledtravelled both lanes [m]
	↑
	22.5
	22.9

	Distance traveledtravelled ego-lane [m]
	↑
	22.7
	23.1

	Lateral deviation [m·s]
	↓
	1.9
	1.6

	Orientation deviation [rad·s]
	↓
	6.3
	5.8


Table 4 shows that training with both reward functions leads to functional lane-following behaviorbehaviour., Hhowever, the non-maximal sSurvival time values indicate that neither of the policies are capable of performing lane following reliably with the presence of an obstacle robot for 60 seconds. All metrics in Table 4 indicate that the modified oOrientation reward leads to better lane- following metrics, than the simpler Ddistance traveledtravelled reward. It should be noted, that these metrics were mainly selected to evaluate the lane- following capabilities of an agent;, a more in-depth analysis of collision avoidance with a vehicle in upfront calls for more specific metrics.
An online video demonstrates the performance of our the agent trained in this study agent: https://youtu.be/8GqAUvTY1po
Salient object maps
Visualiszing which parts of the input image contribute the most to a particular output (action) is important, because, it provides some explanation of the network's inner workings. Fig. Figure 7 shows salient object maps in different scenarios, generated using the method proposed in [17]. All of these images indicate high activations on lane markings, which is expected.
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	a) Simulated 
	b) Real
	c) Collision avoidance


[bookmark: _Ref61611852]Figure 7. Salient objects highlighted on observations in different domains and tasks. Blue regions represent high activations throughout the network.
Conclusions
This work presented a solution to the problem of complex, vision-based lane following in the Duckietown environment using reinforcement learning to train an end-to-end steering policy capable of simulation- to -real transfer learning. We It was found that the training is sensitive to problem formulation, , for examplesuch as to the representation of actions. We showedThis study has demonstrated that by using domain randomiszation, a moderately detailed and accurate simulation is sufficient for training end-to-end lane- following agents that operate in a real environment. The performance of these agents was evaluated by comparing some basic metrics in to matching real and simulated scenarios. Agents were also successfully trained to perform collision avoidance in addition to lane following. Finally, salient object visualiszation was used to give an illustrative explanation of the inner workings of the policies, in both the real and simulated domains.
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APPENDIX
Proximal policy optimization
The pseudo code for proximal policy optimization (PPO) is as follows:
Algorithm PPO, Actor-Critic Style (based on [9])
Input: initial policy, with  parameters and initial value function estimator with  parameters
for iteration = 1,2,... do
for actor=1,2,...,N do
Run  in the environment for T timesteps to collect  trajectory
Compute advantage estimates  based on the current value function
end
Optimisze  wrt. , for K epochs and minibatch size 
Fit the value function estimate by regression on mean-squared error
, 
end
The  adaptive parameter mentioned in Ssection 2.1 is updated according to the following rule:
	
	(6)


where is a hyperparameter and  is the KL-divergence of the old and the updated policy 
	
	(7)


The  generalizsed advantage estimate [12] is calculated as:
	
	(8)

	
	(9)


where  and are the value function estimates, calculated by the value network at steps  and ;.  is the discount factor, while is a hyperparameter of the generaliszed advantage estimate. 
To assure reproducibility, the hyperparameters of the algorithm are provided in the table below.
Table 5. Hyperparameters of the algorithm. The description of some parameters are is from the RLlib documentation of RLlib [13].
	Description 
	Value

	Number of parallel environments
	

	Learning rate  
	  

	Discount factor for return calculation 
	 

	 parameter for the generalised advantage estimate 
	   

	PPO clip parameter 
	 

	Sample batch size 
	

	SGD minibatch size 
	

	Number of epochs executed in every iteration
	

	Target KL-divergence for the calculation of 
	




image2.png
2
Policy _/N Sampling action

- network K, O distribution a
8, t

Pre- St A= [UJ],UJI.]

processing

Environment

mapping





image3.png
~._ Lane 15

p ~center U e
/Ay dine
*d Left road edge Lane ceuter
> 0 Ay d
030 -0.20 ~0.10 00 4010
Road center Righ road edge





image4.png




image5.png




image6.png




image7.jpeg




image8.png
== Wheel Velocity - Clipped == VWheel Velocity
= Orientation = Wheel Velocity - Braking





image9.png
5=
o
[
=
it
=
x
<

500k 1M 1.3M  2M




image10.png
@ -t o~ o

Step

/// .

do ur /
ue)sy

™ 1.5M  2M

500k




image11.png




image12.png
Obstacle robot
Controlled robot]





image13.png




image14.png




image15.png
P

20

15

10

<
s

T T T 4
s o o o
[w] s10q04

U33M13g auesiq

Time [s]




image16.png




image17.png




image18.png




image1.png




