
Sim-to-real
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Vision-based
✿✿

reinforcement learning

applied to end-to-end vehicle
✿✿✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

lane
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

tracking

control

András Kalapos∗, Csaba Gór†, Róbert Moni‡ and István Harmati§

∗BME, Dept. of Control Engineering and Information Technology, Budapest, Hungary, andras.kalapos.research@gmail.com
†Continental ADAS AI, Budapest, Hungary, csaba.gor@continental.com

‡BME, Dept. of Telecommunications and Media Informatics, Budapest, Hungary, robertmoni@tmit.bme.hu
§BME, Dept. of Control Engineering and Information Technology, Budapest, Hungary, harmati@iit.bme.hu

Abstract—In this work, we study vision-based end-to-end
reinforcement learning on vehicle control problems, such as lane
following and collision avoidance. Our controller policy is able
to control a small-scale robot to follow the right-hand lane of
a real two-lane road, while its training was solely carried out
in a simulation. Our model, realized by a simple, convolutional
network, only relies on images of a forward-facing monocular
camera and generates continuous actions that directly control
the vehicle. To train this policy we used Proximal Policy Opti-
mization, and to achieve the generalization capability required
for real performance we used domain randomization. We carried
out thorough analysis of the trained policy, by measuring multiple
performance metrics and comparing these to baselines that rely
on other methods. To assess the quality of the simulation-to-
reality transfer learning process and the performance of the
controller in the real world, we measured simple metrics on
a real track and compared these with results from a matching
simulation. Further analysis was carried out by visualizing salient
object maps.

Index Terms—artificial intelligence, autonomous vehicles, deep
learning, Duckietown, machine learning, mobile robot, reinforce-
ment learning, sim-to-real, transfer learning

I. INTRODUCTION

Reinforcement learning has been used to solve many control

and robotics tasks, however, only a handful of papers has

been published so far that apply this technique to end-to-

end driving [1]–[6]. Even fewer works focus on reinforcement

learning-based driving, trained only in simulations but applied

to real-world problems. Generally, bridging the gap between

simulation and the real world is an important transfer learning

problem related to reinforcement learning and is an unresolved

task for researchers.

Mnih et al. [1] proposed a method to train vehicle con-

troller policies that predict discrete control actions based on

a single image of a forward-facing camera. Jaritz et al. [2]

used WRC6, a realistic racing simulator to train a vision-

based road following policy. They assessed the policy’s gen-

eralization capability by testing on previously unseen tracks

and on real diving videos, in an open-loop configuration,

but their work didn’t extend to evaluation on real vehicles

† and ‡ contributed equally to this work

(a) Simulated (b) Real (c) Collision avoidance

Fig. 1.
✿✿✿✿✿

Salient
✿✿✿✿✿

objects
✿✿✿✿✿✿✿✿

highlighted
✿✿

on
✿✿✿✿✿✿✿✿✿

observations
✿

in
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

domains
✿✿

and

✿✿✿✿

tasks.
✿✿✿

Blue
✿✿✿✿✿

regions
✿✿✿✿✿✿✿

represent
✿✿✿

high
✿✿✿✿✿✿✿✿

activations
✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿✿

network.

in closed-loop control. Kendall et al. [3] demonstrated real-

world driving by training a lane-following policy exclusively

on a real vehicle, under the supervision of a safety driver.

Shi et al. [4] presented research that involves training rein-

forcement learning agents in Duckietown similarly to ours,

however, they mainly focused on presenting a method that

explains the reasoning of the trained agents, rather than on the

training methods. Similarly to our research, Balaji et al. [5]

presented a method for training a road-following policy

in a simulator using reinforcement learning and tested the

trained agent in the real world, yet their primary contribution

is the DeepRacer platform, rather than the in-depth anal-

ysis of the road following policy.
✿✿✿✿✿

Almási
✿✿✿

et
✿✿✿

al.
✿✿✿✿✿✿✿✿

[7] used

✿✿✿✿✿✿✿✿✿✿✿

reinforcement
✿✿✿✿✿✿✿✿

learning
✿✿✿✿

to
✿✿✿✿✿✿

solve
✿✿✿✿✿

lane
✿✿✿✿✿✿✿✿✿

following
✿✿✿

in
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

Duckietown
✿✿✿✿✿✿✿✿✿✿✿✿

environment
✿✿✿✿✿✿✿✿✿

similarly
✿✿✿

to
✿✿✿✿

us.
✿✿✿✿✿✿

Their
✿✿✿✿✿✿

work

✿✿✿✿✿

differs
✿✿✿✿✿✿

from
✿✿✿✿✿

ours
✿✿✿

in
✿✿✿✿✿✿

using
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

off-policy
✿✿✿✿✿✿✿✿✿✿✿✿

reinforcement

✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿

(Deep
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Q-Networks [8]),
✿✿✿✿✿✿

while
✿✿✿

we
✿✿✿✿

use

✿✿

an
✿✿✿✿✿✿✿✿

on-policy
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿

(Proximal
✿✿✿✿✿✿

Policy
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Optimization [12]),

✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

achieves
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿

better
✿✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿✿

efficiency
✿✿✿✿

and

✿✿✿✿✿✿

shorter
✿✿✿✿✿✿✿

training
✿✿✿✿✿✿

times.
✿✿✿✿✿✿✿

Another
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿

difference
✿✿

is
✿✿✿✿

that

✿✿✿

they
✿✿✿✿✿✿

apply
✿

a
✿✿✿✿✿✿✿✿✿✿✿

hand-crafted
✿✿✿✿✿

color
✿✿✿✿✿✿✿✿✿✿✿✿✿

threshold-based
✿✿✿✿✿✿✿✿✿✿✿

segmentation

✿✿

to
✿✿✿

the
✿✿✿✿✿

input
✿✿✿✿✿✿✿

images,
✿✿✿✿✿✿✿✿

whereas
✿✿✿✿

our
✿✿✿✿✿✿✿

method
✿✿✿✿✿

takes
✿✿✿✿

the
✿✿✿✿✿

”raw”

✿✿✿✿✿✿

images
✿✿✿

as
✿✿✿✿✿✿✿

inputs,
✿✿✿✿✿✿✿

which
✿✿✿✿✿✿

allows
✿✿✿✿

for
✿✿✿✿✿✿

more
✿✿✿✿✿✿✿

robust
✿✿✿✿

real

✿✿✿✿✿✿✿✿✿✿✿

performance.

In this contribution

✿✿✿✿

This
✿✿✿✿✿✿

paper
✿✿✿

is
✿✿✿

an
✿✿✿✿✿✿✿✿✿

extended
✿✿✿✿✿✿✿✿

version
✿✿✿

of
✿✿✿✿

our
✿✿✿✿✿✿✿✿

original

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

contribution [10].
✿✿

It
✿✿✿✿✿✿✿

includes
✿✿✿✿

the
✿✿✿✿✿

results
✿✿✿

of
✿✿✿

the
✿✿✿

5th
✿✿✿

AI
✿✿✿✿✿✿

Driving

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Olympics [11] and
✿✿✿✿✿

aims
✿✿✿

to
✿✿✿✿✿✿✿✿

improve
✿✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

description
✿✿

of

✿✿✿

our
✿✿✿✿✿✿✿✿

methods.
✿✿✿

In
✿✿✿✿✿

both
✿✿✿✿✿✿

works, we study vision-based end-

to-end reinforcement learning on vehicle control problems

and propose a solution that performs lane following in the

real world, using continuous actions, without any real data

provided by an expert (as in [3]). Also, we perform validation

of the trained policies in both the real and simulated domains.

✿✿✿✿✿✿✿

Training
✿✿✿

and
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿

code
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿

paper
✿✿

is
✿✿✿✿✿✿✿✿

available
✿✿

on

✿✿✿✿✿✿

GitHub1.
✿

II. METHODS

Salient objects highlighted on observations in different

domains and tasks. Blue regions represent high activations

throughout the network. We trained a neural network-based

controller that takes images from a forward-looking monocular

camera and produces control signals to drive a vehicle in

the right lane of a two-way road. The vehicle to be con-

trolled is a small differential-wheeled mobile robot, a so-

called Duckiebot, which is part of the Duckietown ecosys-

tem [11], a simple and accessible platform for research and

education on mobile robotics and autonomous vehicles. The

primary objective is to travel as far as possible under a given

time, without leaving the road(while lane .
✿✿✿✿✿

Lane
✿

departure is

allowed, but not preferred).
✿

it
✿✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿

preferred.
✿✿✿✿✿✿✿

Despite
✿✿✿

the

✿✿✿✿

latest
✿✿✿✿✿✿✿

version
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Duckiebots
✿✿✿✿✿

being
✿✿✿✿✿✿✿✿

equipped
✿✿✿✿✿

with
✿✿✿✿✿

wheel

✿✿✿✿✿✿✿✿

encoders,
✿✿✿

our
✿✿✿✿✿✿

method
✿✿

is
✿✿✿✿✿✿

solely
✿✿✿✿✿

reliant
✿✿✿

on
✿✿✿✿

data
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

robot’s

✿✿✿✿✿✿✿✿✿✿✿✿

forward-facing
✿✿✿✿✿✿✿✿✿

monocular
✿✿✿✿✿✿✿

camera.
✿

Training and evaluation code for this paper will be open

sourced after the 5th AI-Driving Olympics and will be

available onGitHub2.

A. Reinforcement learning algorithm

✿✿

In
✿✿✿✿✿✿✿✿✿✿✿✿

reinforcement
✿✿✿✿✿✿✿✿✿

learning,
✿✿✿

an
✿✿✿✿✿✿

agent
✿✿✿✿✿✿✿✿

interacts
✿✿✿✿✿

with
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

environment
✿✿✿

by
✿✿✿✿✿

taking
✿✿✿

at
✿✿✿✿✿✿

action,
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

environment
✿✿✿✿✿✿

returns

✿✿

st
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

and
✿✿

rt
✿✿✿✿✿✿✿

reward.
✿✿✿✿

The
✿✿✿✿✿

agent
✿✿✿✿✿✿✿✿✿

computes
✿✿✿

the
✿✿✿✿

next

✿✿✿✿✿

action
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

st
✿✿✿✿

and
✿✿

so
✿✿✿✿

on.
✿✿✿✿

The
✿✿✿✿✿

policy
✿✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

parametric

✿✿✿✿✿✿✿✿

controller
✿✿

of
✿✿✿

the
✿✿✿✿✿

agent
✿✿✿✿

that
✿✿

is
✿✿✿✿✿

tuned
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

reinforcement

✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿✿

training.
✿✿✿✿✿✿✿✿✿

Sequences
✿✿✿

of
✿✿✿✿✿✿✿

actions,
✿✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿

and

✿✿✿✿✿✿

rewards
✿✿✿✿✿✿✿✿✿✿

(so-called
✿✿

τ
✿✿✿✿✿✿✿✿✿✿✿

trajectories)
✿✿✿✿

are
✿✿✿✿✿

used
✿✿✿

to
✿✿✿✿✿

train
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿

parameters
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

policy
✿✿

to
✿✿✿✿✿✿✿✿✿

maximize
✿✿✿✿

the
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿

reward

✿✿✿

over
✿✿

a
✿✿✿✿✿

finite
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿

steps
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(agent-environment
✿✿✿✿✿✿✿✿✿✿✿

interactions).

✿✿✿

For
✿✿✿✿✿✿✿

vehicle
✿✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿✿

problems,
✿✿✿

the
✿✿✿✿✿✿✿

actions
✿✿✿✿

are
✿✿✿✿

the
✿✿✿✿✿✿

signals

✿✿✿

that
✿✿✿✿✿✿✿

control
✿✿✿

the
✿✿✿✿✿✿✿

vehicle,
✿✿✿✿✿

e.g.,
✿✿✿✿✿✿✿

steering
✿✿✿✿

and
✿✿✿✿✿✿✿

throttle,
✿✿✿✿

and
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

are
✿✿✿✿✿✿

sensor
✿✿✿✿

data
✿✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

environment
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿

vehicle,
✿✿✿✿

e.g.,
✿✿✿✿✿✿✿✿

camera,
✿✿✿✿

lidar
✿✿✿✿✿

data,
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿

higher-level
✿✿✿✿✿✿✿✿✿✿

environment

✿✿✿✿✿✿

models.
✿✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿✿

research,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

are
✿✿✿✿✿✿

images
✿✿✿✿

from
✿✿✿

the

✿✿✿✿✿✿

robot’s
✿✿✿✿✿✿✿✿✿✿✿✿

forward-facing
✿✿✿✿✿✿✿✿

camera,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

actions
✿✿✿

are
✿✿✿✿✿✿✿

velocity

✿✿✿✿✿✿

signals
✿✿✿

for
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿

wheels
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

robot.

To train the policy we used Proximal Policy Optimization

algorithm [12] for its stability, sample-complexity, and ability

to take advantage of multiple parallel workers.

Policy optimization algorithms are on-policy reinforcement

learning methods that directly update the πθ(at|st)
✿✿✿✿✿✿✿

optimize

✿✿

the
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿✿

πθ (at|st) policy based on the at actions and

1https://github.com/kaland313/Duckietown-RL
2

the rt reward received for them(.
✿

θ denotes the trainable

parameters of the policyand st is the observation at timestep t)
. The policy used for these algorithms

✿✿✿✿✿✿✿✿

On-policy
✿✿✿✿✿✿✿✿✿✿✿

reinforcement

✿✿✿✿✿✿✿

learning
✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿✿✿✿✿

optimize
✿✿✿

the
✿✿✿✿✿✿✿✿✿

πθ (at|st)
✿✿✿✿✿✿

policy
✿✿✿✿✿

based
✿✿✿

on

✿✿✿✿✿✿✿✿✿

trajectories
✿✿

in
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿

actions
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

computed
✿✿

by
✿✿✿✿✿✿✿✿✿

πθ (at|st).

✿✿

In
✿✿✿✿✿✿✿

contrast
✿✿✿

to
✿✿✿✿✿✿

them,
✿✿✿✿✿✿✿✿✿

off-policy
✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿✿✿

(such
✿✿✿

as
✿✿✿✿✿

DQN

✿✿✿✿

[8])
✿✿✿✿✿

learn
✿✿✿

the
✿✿✿✿✿✿✿✿

estimate
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

action-value
✿✿✿✿✿✿✿

function
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

environment
✿✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿

data
✿✿✿✿✿✿✿✿

collected
✿✿✿✿

by
✿✿✿✿

any
✿✿✿✿✿

agent,
✿✿✿✿✿✿

which

✿✿✿✿✿

makes
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿

less
✿✿✿✿✿✿

stable
✿✿✿

in
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿✿✿

environments.

✿✿

In
✿✿✿✿✿✿

policy
✿✿✿✿✿✿✿✿✿✿✿

optimization
✿✿✿✿✿✿✿✿✿✿

algorithms
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

πθ (at|st)
✿✿✿✿✿✿

policy
✿

is

stochastic and in case of deep reinforcement learning it ’s

✿

is
✿

implemented by a neural network, which is updated us-

ing gradient methods. In simpler versions of the algorithm

(such as REINFORCE [?]) , the gradients are estimated

by ĝ = Êτ∼πθ
[∇θ log πθ(at|st)G

πθ (at, st)], where Gt is the

return
✿

a
✿✿✿✿✿✿✿

gradient
✿✿✿✿✿✿✿✿

method.
✿✿✿✿

The
✿✿✿✿✿✿

policy
✿✿✿

is
✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿✿✿✿

because,

✿✿✿✿✿✿

instead
✿✿

of
✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿

the
✿✿✿✿✿✿

actions
✿✿✿✿✿✿✿

directly,
✿✿✿

the
✿✿✿✿✿✿

policy
✿✿✿✿✿✿✿

network

✿✿✿✿✿✿

predicts
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿

(see
✿✿

µ
✿✿✿

and

✿

σ
✿✿✿

on
✿✿✿

fig.
✿✿

2)
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿

sampled
✿✿

to
✿✿✿✿✿✿✿

acquire
✿✿✿

the
✿✿̃

at
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿✿

actions

✿✿✿✿✿

(here,
✿✿✿✿✿✿✿✿

predicted
✿✿✿✿✿

refers
✿✿✿

to
✿✿✿✿

this
✿✿✿✿✿

action
✿✿✿✿✿✿

being
✿✿✿✿✿✿✿✿

predicted
✿✿✿

by
✿✿✿

the

✿✿✿✿✿✿

policy).

Proximal Policy Optimization performs the weight updates

using a special loss function to keep the new policy close to

the old, thereby improving the stability of the training. Two

loss functions were proposed by Schulman et al. [12]:

LCLIP (θ) = Ê

[

min

(

rρt(θ)Ât, clip(rρt(θ), 1− ǫ, 1 + ǫ)Ât

)]

(1)

LKLPEN (θ) = Ê

[

rρt(θ)Â− βKL [πθold(·|st), πθ(·|st)]

]

(2)

where clip(·) and KL[·] refer to the clipping function

and KL-divergence respectively, while Â is calculated as

the generalized advantage estimate [13]. In these loss func-

tionsrt(θ) =
πθ(at|st)

πθold
(at|st)

, ǫ is a constant usually in the [0.1, 0.3]

range, while β is an adaptive parameter. ,
✿✿✿✿

and
✿

ρt(θ) =
πθ(at|st)

πθold(at|st)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(3)

We used an open-source implementation of the

algorithm
✿✿✿✿✿✿✿

Proximal
✿✿✿✿✿✿✿

Policy
✿✿✿✿✿✿✿✿✿✿✿✿

Optimization
✿✿✿✿✿

from
✿✿✿✿✿✿

RLlib [14],

which performs the gradient updates based on the weighted

sum of these loss functions.
✿✿✿✿✿✿

Pseudo
✿✿✿✿✿

code
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

additional

✿✿✿✿✿

details
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿

are
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Appendix.
✿

B. Policy architecture

The controller policy is realized by a shallow (4-layer) con-

volutional neural network. We consider this policy end-to-end

because the only learning component is the neural network,

which directly computes actions based on observations from

the environment. Both the policy and the value network use

the architecture presented by Mnih et al. [1], with no weight

sharing (with the only difference of using linear activation on

the output of the policy network). .
✿✿✿✿

No
✿✿✿✿✿✿✿

weights
✿✿✿

are
✿✿✿✿✿✿

shared

✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿

policy
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

value
✿✿✿✿✿✿✿✿

network.
✿

https://github.com/kaland313/Duckietown-RL

at=[ωl,ωr]st

~st

Pre-

processing

Action

mapping
Environment

Policy

network

Sampling action

distributionμ, σ at
~

Fig. 2. Illustration of the policy architecture with the used notations.
✿✿

The

✿✿✿

agent
✿✿

or
✿✿✿✿✿

policy
✿

is
✿✿✿✿✿✿✿✿

represented
✿✿

by
✿✿✿

the
✿✿✿✿✿

”Policy
✿✿✿✿✿✿✿

Network”
✿✿✿

and
✿✿✿✿✿✿✿

”Sampling
✿✿✿✿

action

✿✿✿✿✿✿✿✿✿

distributions”
✿✿✿✿✿

blocks.
✿✿

st:
✿✿✿✿

”raw”
✿✿✿✿✿✿✿✿✿

observation,
✿✿̃

st:
✿✿✿✿✿✿✿✿✿

preprocessed
✿✿✿✿✿✿✿✿

observation,
✿✿̃

at:

✿✿✿✿✿✿

predicted
✿✿✿✿✿

action,
✿✿

at:
✿✿✿✿✿✿✿✿✿✿

postprocessed
✿✿✿✿

action

Some pre- and post-processing is applied to the observa-

tions and actions respectively, but these only perform very

simple transformations .
✿✿✿✿✿✿✿✿

(explained
✿✿✿

in
✿✿✿✿

the
✿✿✿✿

next
✿✿✿✿✿✿✿✿✿

paragraph

✿✿✿

and
✿✿✿✿

sec.
✿✿✿✿✿✿

II-C).
✿✿✿✿

The
✿✿✿✿

aim
✿✿✿

of
✿✿✿✿✿

these
✿✿✿✿

pre-
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

postprocessing

✿✿✿✿

steps
✿✿

is
✿✿✿

to
✿✿✿✿✿✿✿✿✿

transform
✿✿✿

the
✿✿✿

st
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿

at
✿✿✿✿✿✿✿

actions
✿✿

to

✿✿✿✿✿✿✿✿✿✿✿✿

representations
✿✿✿✿

that
✿✿✿✿✿✿

enable
✿✿✿✿✿

faster
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿✿✿✿✿

without
✿✿✿✿✿

losing

✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿

features
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

or
✿✿✿✿✿✿✿✿✿

restricting
✿✿✿✿✿✿✿✿

necessary

✿✿✿✿✿✿

actions.
✿

The input of the policy network is the last three observations

(images) scaled, cropped and stacked (along the depth axis).

The observations returned by the environment
✿✿✿

(st
✿✿

on
✿✿✿✿

fig.
✿✿

2)

are 640 × 480 (width, height) RGB images whose top third

mainly shows the sky, therefore is cropped. Then, the cropped

images are scaled down to 84×84 resolution (note the uneven

scaling), which are then stacked along the depth axis resulting

in 84×84×9 input tensors .
✿✿✿

(s̃t
✿✿

on
✿✿✿

fig.
✿✿✿

2). The last three images

are stacked to provide the policy with information about the

robot’s speed and acceleration.

We experimented with multiple action representations (see

sec. II-C), depending on these
✿

.
✿✿✿✿✿✿✿✿✿✿

Depending
✿✿✿

on
✿✿✿✿✿✿

these,
✿

the

policy outputs one or two scalar values which control
✿̃

at

✿✿✿✿✿✿✿

predicted
✿✿✿✿✿✿

action
✿✿✿✿✿✿

vector
✿✿

of
✿✿✿✿

two
✿✿

or
✿✿

a
✿✿✿✿✿

scalar
✿✿✿✿✿

value
✿✿✿✿

that
✿✿✿✿✿✿✿

controls

the vehicle. The policy is stochastic, therefore;
✿✿✿✿✿✿✿✿✿

therefore,

the output of the neural network produces the
✿✿

µ
✿✿✿

and
✿✿✿✿✿

log σ
parameters of a (multivariate diagonal) normal distribution

, which
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿

diagonal
✿✿✿✿✿✿✿

normal
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿

During

✿✿✿✿✿✿✿

training,
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

distribution
✿

is sampled to acquire actions.
✿✿

the

✿✿̃

at
✿✿✿✿✿✿

action,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

improves
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

exploration
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

action
✿✿✿✿✿

space.

✿✿✿✿✿✿

During
✿✿✿✿✿✿✿✿✿✿

evaluations,
✿✿✿

the
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿

step
✿✿

is
✿✿✿✿✿✿✿

skipped
✿✿

by
✿✿✿✿✿

using
✿✿✿

the

✿✿✿✿✿✿✿

predicted
✿✿

µ
✿✿✿✿✿

mean
✿✿✿✿✿

value
✿✿✿

as
✿✿✿

the
✿✿̃

at
✿✿✿✿✿✿

policy
✿✿✿✿✿✿

output.
✿

C. Action representations

The
✿✿✿✿✿

action
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

post-processing
✿✿✿✿✿

step
✿✿✿✿✿✿✿✿✿✿

transforms
✿✿✿✿✿

the
✿✿✿̃

at

✿✿✿✿✿✿✿

predicted
✿✿✿✿✿✿✿✿

actions,
✿✿✿✿✿✿

which
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

implemented
✿✿✿✿✿✿

using
✿✿✿✿✿

many

✿✿✿✿✿✿✿✿✿✿✿✿✿

representations,
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

at = [ωl, ωr]
✿✿✿✿✿✿

wheel
✿✿✿✿✿✿✿✿

velocities
✿✿✿✿

(see
✿✿✿

fig
✿✿✿

2).

✿✿✿

The
✿

vehicle to be controlled is a differential-wheeled robot,

therefore the most general action representation is to directly

predict
✿✿✿✿✿✿✿

compute
✿

the angular velocities of the two wheels

as continuous values in the ωl,r ∈ [−1; 1] range (where 1

and -1 correspond to rotating forward and backward at full

speed). However, this action space allows for actions that are

not necessary for the maneuvers we examine in this paper.

Moreover, by allowing unnecessary actions, the reinforcement

learning algorithm must rule these out, potentially making

the exploration of the action space more difficult therefore

increasing the steps required to train an agent. Several methods

can be used to constrain and simplify the action space, such as

discretization, clipping some actions, or mapping to a lower-

dimensional space.

Most previous works ([1], [2], [5]
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[1], [2], [5], [7]) use

discrete action spaces, thus the neural network in these policies

selects one from a set of hand-crafted actions (steering, throttle

combinations), while Kendall et al. [3] utilize continuous

actions, as we do. However, they don’t predict throttle directly,

only a speed set-point for a classical controller.

In order to test the reinforcement learning algorithm’s ability

to solve the most general problem, we experimented with

multiple action mappings and simplifications of the action

space. These were

1) Wheel Velocity: The policy directly outputs wheel ve-

locities,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

at = [ωl, ωr] = ãt,
✿✿✿✿✿✿✿✿

therefore
✿

ωl,r ∈ [−1; 1]

2) Wheel Velocity - Positive Only: Only allow positive

wheel velocities, because only these are required to move

forward. Values predicted outside the ωl,r ∈ [0; 1] interval

are clipped.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

at = [ωl, ωr] = clip(ãt, 0, 1)

3) Wheel Velocity - Braking: Wheel velocities could

still only fall in the ωl,r ∈ [0; 1] interval, but the

predicted values are interpreted as the amount of brak-

ing from the maximum speedωl,r = 1− ypred,l,r. The

main differentiating factor from the Positive Only op-

tion is the bias towards moving forward at full speed.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

at = [ωl, ωr] = clip(1− ãt, 0, 1)

4) Steering: Predicting a scalar value that is continuously

mapped to combinations of wheel velocities. The 0.0 scalar

value corresponds to going straight (at full speed), while -1.0

and 1.0 refer to turning left or right, with one wheel completely

stopped and the other one going at full speed.
✿✿✿✿✿✿✿✿✿✿

Intermediate

✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

using
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿✿✿✿

between
✿✿✿✿

these

✿✿✿✿✿✿

values.
✿

The speed of the robot is always maximal for a

particular steering value.
✿✿

A
✿✿✿✿✿✿

formula
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

implements
✿✿✿

this
✿✿✿✿✿

action

✿✿✿✿✿✿✿✿

mapping:
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[ωl, ωr] = clip([1 + ãt, 1− ãt], 0, 1)

D. Reward shaping

The reward function is a fundamental element of every

reinforcement learning problem as it serves the important

role of converting a task from a textual description to a

mathematical optimization problem. The primary objective for

the agent is to travel as far as possible under a given time in

the right lane, therefore we propose two rewards that promote

this behavior.

1) Distance traveled: The agent is directly rewarded pro-

portionally to the distance it moved further along the right

lane under every step. Only longitudinal motion is counted,

and only if the robot stayed in the right lane.

2) Orientation: The agent is rewarded if it is facing towards

and moves in a certain desired orientation, which is determined

based on its lateral position. In simple terms, it is rewarded

the most if it faces towards the center of the right lane

(some example configurations are shown on fig. 3d). A term

d

Ψdes

Left road edge

Road center

Lane center

Righ road edge

-45

-45

0

- φ 0 φ0 Ψerr

1 Λ(Ψerr)

Ψ
d

Lane
center
line

(a) (b)

(c) (d)

Fig. 3. Explanation of the proposed Orientation reward. (a) explains Ψ, d,
(b) shows how the desired orientation depends on the lateral error, (dc)

✿✿✿✿

shows

✿✿

the
✿✿✿✿✿✿

function
✿✿✿✿

Λ(x),
✿✿✿

while
✿✿✿

(d) shows some examples of desired configurations,
while (c) shows the function

✿

.

Λ(x) =

{
1

2
+ 1

2
cos

(
π x

ϕ

)
if − 1 ≥ x ≥ 1

ε(−| x
ϕ
|+ 1) otherwise

, ε ∈[10−1, 10−2] (3)

proportional to the angular velocity of the faster moving wheel

is also added to encourage fast motion.

This reward is calculated as r = λΨrΨ(Ψ, d) +
λvrv(ωl, ωr), where rΨ(·), rv(·) are the orientation and

velocity based components
✿✿✿✿✿✿✿✿✿✿

orientation-
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

velocity-based

✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿✿✿✿

(explained
✿✿✿✿✿✿

below), while λΨ, λv constants scale

these to [−1, 1]. Ψ, d are orientation and lateral error from the

desired trajectory, which is the center line of the right lane

(see fig. 3a).

The orientation-based term is calculated as rΨ(Ψ, d) =
Λ(Ψerr) = Λ(Ψ − Ψdes(d)), where Ψdes(d) is the desired

orientation, calculated based on the lateral distance from the

desired trajectory (see fig. 3b for the illustration of Ψdes(d)).
The Λ function achieves that |Ψerr| < ϕ error is promoted

largely, while error larger than this leads to small negative

reward (formal description and a plot of Λ is shown on fig. 3c).

Λ(x) =

{
1
2 + 1

2 cos
(
π x

ϕ

)
if − 1 ≥ x ≥ 1

ε(−| x
ϕ
|+ 1) otherwise

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ε ∈ [10−1, 10−2]
✿✿✿✿

and
✿

ϕ = 50◦ hyper-parameter was

✿✿✿✿

were
✿

selected arbitrarily.

The velocity-based component is calculated as rv(ωl, ωr) =
max(ωl, ωr) to reward high speed motion equally in straight

and curved sections, where
✿

.
✿✿

In
✿✿✿✿✿✿✿

curves, only the outer wheel

can rotate as fast as on straight sections
✿

at
✿✿✿✿✿✿✿✿

maximal
✿✿✿✿✿✿

speed,
✿✿

on

✿

a
✿✿✿✿✿✿✿

straight
✿✿✿✿

road,
✿✿✿✿✿

both
✿✿

of
✿✿✿✿✿

them.

E. Simulation to reality transfer

To train agents, we used an open-source simulation of

the Duckietown environment [15]. It models certain physical

properties of the real environment accurately (dimensions of

the robot, camera parameters, dynamic properties etc.), but

Fig. 4. Examples of domain randomized observations

several other effects (textures, objects surrounding the roads)

and light simulation are less realistic (e.g. compared to modern

computer games). These inaccuracies create a gap between

simulation and reality which makes it challenging for any

reinforcement learning agent to be trained in a simulation but

operate in reality.

To bridge the simulation to reality gap, and to achieve

the generalization capability required for real performance we

used domain randomization. This involves training the policy

in many different variants of a simulated environment, by vary-

ing lighting conditions, object textures, camera, and vehicle

dynamics parameters, road structures etc. (for examples of

domain randomized observations see fig. 4). In addition to

the ”built-in” randomization options of Gym-Duckietown, we

trained on a diverse set of maps to further improve the agent’s

generalization capability.

F. Collision avoidance

Collision avoidance with other vehicles greatly increases the

complexity of the lane-following task. These problems can be

solved in different ways, e.g. by overtaking or following from

a safe distance. However, the sensing capability of the vehicle

and the complexity of the policy determine the solution it can

learn. Images from the forward-facing camera of a duckiebot

only have 160◦ horizontal field of view, therefore the pol-

icy controlling the vehicle has no information about objects

moving next to or behind the robot. Also, for simplicity, we

chose a convolutional network and didn’t incorporate
✿✿✿

used

✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿✿✿

convolutional
✿✿✿✿✿✿✿

network
✿✿✿

for
✿✿✿✿✿✿✿

collision
✿✿✿✿✿✿✿✿✿

avoidance
✿✿

as
✿✿✿

for

✿✿✿

lane
✿✿✿✿✿✿✿✿✿✿

following,
✿✿✿✿✿

which
✿✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿✿✿

feature
✿

an LSTM cell into

it
✿✿

or
✿✿✿

any
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

sequence
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿✿✿✿✿

component
✿✿✿

(in
✿✿✿✿✿✿✿

contrast
✿✿

to

✿✿✿✿

[2]). For these reasons, it is unable to plan long maneuvers,

such as overtaking, which also requires side-vision to check

if returning to the right lane is safe. Therefore, we trained a

policy in situations where there is a slow vehicle ahead, and

the agent has to learn to perform lane following at full speed

until it catches up with the vehicle upfront, then it must reduce

its speed and keep a safe distance to avoid collision.

In these experiments, the Wheel Velocity - Braking action

mapping was used
✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿✿✿

was
✿✿✿✿✿

used
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

policy’s

✿✿✿✿✿

output
✿

because this allows the policy
✿✿✿✿

agent
✿

to slow down or

even stop the vehicle if necessary (unlike the one we call Steer-

ing). Rewards
✿✿✿✿

Both
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Orientation
✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

Distance
✿✿✿✿✿✿✿

traveled

(a) Simulated (b) Simulated (c) Real

Fig. 5. (a): Test track used for simulated reinforcement learning and baseline
evaluations. (b),(c): Real and simulated test track used for the evaluation of
the simulation to reality transfer.

✿✿✿✿✿

reward
✿✿✿✿✿✿✿✿✿

functions
✿✿✿✿✿

were
✿✿

used to train
✿✿✿✿✿✿

agents
✿

for collision

avoidancewere the modified version of the Orientation reward

and Distance traveled (unchanged)
✿

.
✿✿✿✿

The
✿✿✿✿✿✿✿

former
✿✿✿✿

one
✿✿✿✿

was

✿✿✿✿✿✿✿✿✿✿✿

supplemented
✿✿✿✿

with
✿✿

a
✿✿✿✿

term
✿✿✿✿

that
✿✿✿✿✿✿✿✿

promotes
✿✿✿✿✿✿✿✿

collision
✿✿✿✿✿✿✿✿✿

avoidance,

✿✿

the
✿✿✿✿✿

latter
✿✿

is
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿✿

unchanged. The simulation we used provides

a pcoll
✿✿✿

pcoll
✿

penalty if the so-called safety circles of two

vehicles overlap. The reward term
✿✿✿✿

rcoll
✿✿✿✿✿✿

reward
✿✿✿✿✿✿✿✿✿✿

component

✿✿✿

that
✿✿✿✿✿✿✿✿

promotes
✿✿✿✿✿✿✿✿

collision
✿✿✿✿✿✿✿✿✿

avoidance
✿✿

is
✿

calculated based on this

penalty.
✿✿

If
✿✿✿

the
✿✿✿✿✿✿

penalty
✿✿

is
✿✿✿✿✿✿✿✿✿✿

decreasing,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿

robot

✿

is
✿✿✿✿

able
✿✿✿

to
✿✿✿✿✿✿✿

increase
✿✿✿

the
✿✿✿✿✿✿✿✿

distance
✿✿✿✿

from
✿✿✿

an
✿✿✿✿✿✿✿✿

obstacle,
✿✿✿

the
✿✿✿✿✿✿

reward

✿✿✿✿

term
✿✿

is
✿✿✿✿✿✿✿✿✿✿

proportional
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

change
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

penalty.
✿✿✿✿✿✿✿✿✿

Otherwise,

✿

it
✿

is proportional to its change if it’s decreasing, otherwise, it

’s 0.

rcoll =

{
−λcoll ·∆pcoll if ∆pcoll < 0

0 otherwise
(5)

This term is added to the Orientation reward and intends to

encourage the policy to increase the distance from the vehicle

ahead if it got too close. Collisions are only penalized by

terminating the episode, without giving any negative reward.

G. Evaluation

To assess the performance of the reinforcement learning-

based controller, we measured multiple performance metrics in

the simulation and compared these against two baselines, one

using a classical control theory approach, and human driving.

To our knowledge no other methods have been published so

far, which could be used as a baseline. These metrics are:

1) Survival time
✿✿✿✿✿✿✿✿

(tsurvive) [
✿

s]: The time until the robot left

the road or the time period of an evaluation .
✿✿✿✿✿✿✿

episode.

2) Distance traveled in ego-lane
✿✿✿✿✿

(sego) [m]: The distance

traveled along the right-hand-side lane under a fixed time pe-

riod. Only longitudinal motion is counted, therefore tangential

movement counts the most towards this metric.

3) Distance traveled both lanes
✿✿✿✿✿

(sboth)
✿

[m]: The distance

traveled along the road under a fixed time period, but also

sections where the agent moved in the oncoming lane count

towards this metric.

4) Lateral deviation
✿✿✿✿

(dd) [m·s]: Lateral deviation from the

lane center line integrated over the time of an episode.

5) Orientation deviation
✿✿✿

(dΨ)
✿

[rad·s]: The robot orien-

tation’s deviation from the tangent of the lane center line,

integrated over the time of an episode.

6)
✿✿✿✿

Time
✿✿✿✿✿✿

outside
✿✿✿✿✿✿✿✿

ego-lane
✿✿✿✿✿

(tout)
✿

[
✿

s]:
✿

:
✿✿✿✿✿

Time
✿✿✿✿✿

spent
✿✿✿✿✿✿

outside

✿✿

the
✿✿✿✿✿✿✿✿✿

ego-lane.
✿

✿✿✿✿

Even
✿✿✿✿✿✿✿✿

thorough
✿✿✿✿✿✿✿✿✿✿✿

Duckietown
✿✿✿✿✿✿✿

intends
✿✿

to
✿✿✿

be
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

standardized

✿✿✿✿✿✿✿

platform,
✿✿✿

it
✿✿✿

is
✿✿✿✿

still
✿✿✿✿✿✿

under
✿✿✿✿✿✿✿✿✿✿✿✿

development,
✿✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

official

✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿✿✿✿

methods
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

baselines
✿✿✿✿✿

have
✿✿✿✿

not
✿✿✿✿✿

been
✿✿✿✿✿✿✿

adopted

✿✿✿✿✿

widely
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

research
✿✿✿✿✿✿✿✿✿✿

community.
✿✿✿✿

The
✿✿✿

AI
✿✿✿✿✿✿✿

Driving
✿✿✿✿✿✿✿✿

Olympics

✿✿✿✿✿✿✿

provides
✿✿

a
✿✿✿✿✿

great
✿✿✿✿

way
✿✿✿

to
✿✿✿✿✿✿✿✿✿

benchmark
✿✿✿✿

our
✿✿✿✿✿✿✿

solution
✿✿✿

to
✿✿✿✿✿✿

others;

✿✿✿✿✿✿✿

however,
✿✿✿

the
✿✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿

behind
✿✿✿✿

these
✿✿✿✿✿✿✿✿

solutions
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

published

✿✿

in
✿✿

the
✿✿✿✿✿✿✿✿

scientific
✿✿✿✿✿✿✿✿

literature.
✿✿✿✿

For
✿✿✿

this
✿✿✿✿✿✿

reason,
✿✿✿

we
✿✿✿✿✿✿✿✿

primarily
✿✿✿✿✿✿

analyze

✿✿✿

our
✿✿✿✿✿✿

method
✿✿✿

by
✿✿✿✿✿✿✿✿✿

comparing
✿✿

it
✿✿

to
✿✿✿✿✿✿✿✿

baselines
✿✿✿✿

that
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿✿

evaluate

✿✿✿✿✿

under
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

conditions.
✿

The classical control theory baseline relies on information

about the robot’s relative location and orientation to the

centerline of the lane, which are available in the simulator. This

baseline works by controlling the robot to orient itself towards

a point on it’s desired path ahead and calculating wheel ve-

locities using a proportional-derivative (PD) controller, based

on the orientation error of the robot. The parameters of

this controller were hand-tuned to achieve sufficiently good

performance, but more advanced control schemes could offer

better results.

In many reinforcement learning problems (e.g. the Atari

2600 games [16]) the agents are compared to human baselines.

Motivated by this benchmark we propose a method to measure

how well humans are able to control duckiebots, which could

be used as a baseline. The values shown in Table I were

recorded by controlling the simulated robot using the arrow

keys on a keyboard (therefore via discrete actions), while

the observations seen by the human driver were very similar

compared to the observations of the reinforcement learning

agent.

H.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Methods/Tweaks/Tricks
✿✿

to
✿✿✿✿✿✿✿

improve
✿✿✿✿✿

results
✿✿

at
✿✿✿

the
✿✿✿

AI
✿✿✿✿✿✿

Driving

✿✿✿✿✿✿✿✿

Olympics

✿✿✿

We
✿✿✿✿✿✿✿

trained
✿✿✿✿

our
✿✿✿✿✿✿

agents
✿✿✿

to
✿✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿

solve
✿✿✿✿✿✿✿✿✿✿✿

autonomous

✿✿✿✿✿✿

driving
✿✿✿✿✿✿✿✿

problems
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Duckietown
✿✿✿✿✿✿✿✿✿✿✿

environment
✿✿✿✿

and
✿✿✿

not
✿✿

to

✿✿✿✿✿✿✿✿

maximize
✿✿✿✿✿

scores
✿✿

at
✿✿✿

the
✿✿✿

AI
✿✿✿✿✿✿✿

Driving
✿✿✿✿✿✿✿✿✿

Olympics.
✿✿✿✿✿✿✿✿✿

Therefore,
✿✿✿✿

some

✿✿✿✿✿✿✿✿✿✿✿✿✿

hyperparameters
✿✿✿✿

and
✿✿✿✿✿✿✿

methods
✿✿✿✿

had
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿

modified
✿✿

to
✿✿✿✿✿

match
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

competitions’
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿✿✿✿✿

procedures.
✿✿✿✿

We
✿✿✿✿✿

found
✿✿✿

that
✿✿✿✿✿✿✿

training
✿✿

on

✿✿✿✿✿

lower
✿✿✿✿✿

frame
✿✿✿✿

rates
✿✿✿✿

(0.1
✿✿✿

ms
✿✿✿

step
✿✿✿✿✿

time)
✿✿✿✿✿✿✿✿

improves
✿✿✿

the
✿✿✿✿✿✿

scores,
✿✿✿✿

even

✿✿✿✿✿✿

though
✿✿✿

the
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿✿✿✿✿

simulation
✿✿

is
✿✿✿✿✿✿✿

stepped
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

frequently.

✿✿✿✿

Also,
✿✿✿✿✿✿✿✿✿✿✿✿

implementing
✿✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿

motion
✿✿✿✿

blur
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

that
✿✿

is

✿✿✿✿✿✿

applied
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

official
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿✿✿✿

improves
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿✿✿✿

greatly

✿✿✿

over
✿✿✿✿✿✿

agents
✿✿✿✿

that
✿✿✿✿✿

were
✿✿✿✿✿✿

trained
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

non-blurred
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿

III. RESULTS

A. Simulation

Even though multiple papers demonstrate the feasibility

of training vision-based driving policies using reinforcement

learning, adapting to a new environment still poses many

challenges. Due to the high dimensionality of the image-

like observations, many algorithms converge slowly and are

very sensitive to hyperparameter selection. Our method, using

TABLE I
COMPARISON OF THE REINFORCEMENT LEARNING AGENT TO TWO

BASELINES IN SIMULATION

Mean metrics over 5 episodes RL PD Human

agent baseline baseline

Survival time [s] ↑ 15 15 15

Distance traveled both lanes [m] ↑ 7.1 7.6 7.0

Distance traveled ego-lane [m] ↑ 7.0 7.6 6.7

Lateral deviation [m·s] ↓ 0.5 0.5 0.9

Orientation deviation [rad·s] ↓ 1.5 1.1 2.8

TABLE II

✿✿✿✿✿✿✿✿✿

COMPARING
✿✿✿

OUR
✿✿✿✿✿✿✿

METHOD
✿✿

TO
✿✿✿✿✿

OTHER
✿✿✿✿✿✿✿✿

SOLUTIONS
✿✿

AT
✿✿✿

THE
✿✿

AI
✿✿✿✿✿✿✿

DRIVING

✿✿✿✿✿✿✿

OLYMPICS

✿✿✿✿✿

Author
✿✿✿✿✿✿

tsurvive
✿ ✿✿✿

sego
✿

dd
✿ ✿✿✿

tout
✿

[
✿

s]
✿

↑ [
✿

m]
✿

↑ [
✿✿

m·s]
✿

↓
✿

[s]
✿

↓
✿

✿✿

A.
✿✿✿✿✿✿

Kalapos
✿✿✿✿

(ours,
✿✿✿✿✿✿✿✿

[10], [17])
✿✿

60
✿✿✿

30.38
✿✿✿

2.65
✿

0

✿✿

A.
✿✿✿✿

Béres
✿✿✿✿

[17]
✿✿

60
✿✿✿✿

29.14
✿✿✿

4.10
✿ ✿✿

1.4

✿✿

M.
✿✿✿

Tim
✿✿✿✿✿

[17]
✿✿

60
✿✿✿✿

28.52
✿✿✿

3.45
✿ ✿✿

0.4

✿✿

A.
✿✿✿✿✿✿✿✿

Nikolskaya
✿✿

60
✿✿✿✿

24.80
✿✿✿

3.15
✿ ✿✿

1.6

✿✿

R.
✿✿✿✿

Moni
✿✿✿✿

[17]
✿✿

60
✿✿✿✿

18.60
✿✿✿

1.78
✿

0

✿✿

Z.
✿✿✿✿✿

Lorincz
✿✿✿✿

[17]
✿✿

60
✿✿

18.6
✿ ✿✿

3.5
✿✿

0.8

✿✿

M.
✿✿✿✿✿✿✿✿

Sazanovich
✿✿

60
✿✿✿✿

16.12
✿✿✿

4.35
✿ ✿✿

3.4

✿✿

R.
✿✿✿

Jean
✿ ✿✿

60
✿✿

15.5
✿ ✿✿✿

3.28
✿

0

✿✿

Y.
✿✿✿✿✿✿

Belousov
✿ ✿✿

60
✿✿✿✿

14.88
✿✿✿

5.41
✿ ✿✿

9.8

✿✿

M.
✿✿✿✿

Teng
✿✿

60
✿✿✿✿

11.78
✿✿✿

2.92
✿

0

✿

P.
✿✿✿✿✿

Almási
✿✿✿✿✿✿✿✿

[7], [17]
✿✿

60
✿✿✿✿

11.16
✿✿✿

1.32 0

Datasource:https://challenges.duckietown.org/v4/

Downloaded at January 12, 2021

Proximal Policy Optimization is able to converge to good lane

following policies in 1 million timesteps, thanks to the high

sample-complexity of the algorithm.
✿✿✿✿

This
✿✿✿✿✿✿✿

training
✿✿✿✿

takes
✿✿✿✿✿

2-2.5

✿✿✿✿

hours
✿✿✿

on
✿✿

5
✿✿✿✿✿

cores
✿✿

of
✿✿✿

an
✿✿✿✿

Intel
✿✿✿✿✿

Xeon
✿✿✿✿✿✿✿✿

E5-2698
✿✿

v4
✿✿✿

2.2
✿✿✿✿✿

GHz
✿✿✿✿

CPU

✿✿✿

and
✿✿✿

an
✿✿✿✿✿✿

Nvidia
✿✿✿✿✿

Tesla
✿✿✿✿✿

V100
✿✿✿✿✿

GPU
✿✿

if
✿✿✿

16
✿✿✿✿✿✿✿

parallel
✿✿✿✿✿✿✿✿✿✿✿

environments

✿✿

are
✿✿✿✿✿

used.
✿

1) Comparing against baselines: Table I compares our

reinforcement learning agent to the baselines. The performance

of the trained policy is measurable to our classical control

theory baseline, as well as to how well humans are able to

control the robot in the simulation. Most metrics indicate

Wheel Velocity - Clipped Wheel Velocity

Orientation Wheel Velocity - Braking

Step

500k 1M 1.5M 2M
0

2

4

6

D
is

ta
n
ce

 t
ra

v
el

ed
in

 e
go

-l
a
n
e

[m
]

(a) Orientation reward

500k 1M 1.5M 2M
0

2

4

6

Step

(b) Distance travelled reward

Fig. 6. Learning curves for the reinforcement learning agent with different
action representations and reward functions.

TABLE III
EVALUATION RESULTS OF REINFORCEMENT LEARNING AGENT IN THE

REAL ENVIRONMENT AND IN MATCHING SIMULATIONS

Eval. Mean metrics over 6 episodes Domain Nominal

Domain Rand.

Real Survival time [s] ↑ 54 45

Distance traveled both lanes [m] ↑ 15.6 11.4

Distance traveled ego-lane [m] ↑ 7.0 8.4

Sim. Survival time [s] ↑ 60 60

Distance traveled [m] ↑ 15.5 15.0

similarly good or equal performance, even though the PD

controller baseline relies on high-level data such as position

and orientation error, rather than images.

2)
✿✿✿✿✿✿✿✿✿

Comparing
✿✿✿✿✿✿✿

against
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

solutions
✿✿✿

at
✿✿✿

the
✿✿✿

AI
✿✿✿✿✿✿✿

Driving

✿✿✿✿✿✿✿✿

Olympics:
✿✿✿✿

Table
✿✿

II
✿✿✿✿✿✿

shows
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

top-ranking
✿✿✿✿✿✿✿✿

solutions
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿

simulated
✿✿✿✿

lane
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿

(validation)
✿✿✿✿✿✿✿✿

challenge
✿✿

at
✿✿✿

the
✿✿✿

5th
✿✿✿

AI

✿✿✿✿✿✿

Driving
✿✿✿✿✿✿✿✿✿

Olympics.
✿✿✿✿

All
✿✿✿✿✿✿✿✿✿✿✿✿✿

top-performing
✿✿✿✿✿✿✿✿

solutions
✿✿✿✿

are
✿✿✿✿

able
✿✿

to

✿✿✿✿✿✿

control
✿✿✿

the
✿✿✿✿✿

robot
✿✿✿✿✿✿✿

reliably
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿

for
✿✿✿

the
✿✿✿✿

time
✿✿✿

of
✿✿

an

✿✿✿✿✿✿

episode
✿✿✿✿

(60
✿✿

s),
✿✿✿✿✿✿✿✿

however,
✿✿✿✿

the
✿✿✿✿✿✿✿✿

distances
✿✿✿✿✿✿✿

traveled
✿✿✿

are
✿✿✿✿✿✿✿✿

different.

✿✿✿

Our
✿✿✿✿✿✿✿

method
✿✿

is
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿

control
✿✿✿

the
✿✿✿✿✿

robot
✿✿✿✿✿✿✿

reliably
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

highest

✿✿✿✿✿

speed
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿

achieves
✿✿✿✿

the
✿✿✿✿✿✿

highest
✿✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿

traveled
✿✿✿✿✿

value,

✿✿✿✿

while
✿✿✿✿

also
✿✿✿✿✿✿✿✿

showing
✿✿✿✿

good
✿✿✿✿✿✿

lateral
✿✿✿✿✿✿✿✿

deviation
✿✿✿

and
✿✿✿✿✿

rarely
✿✿✿✿✿✿✿✿

departing

✿✿

the
✿✿✿✿✿✿✿✿✿

ego-lane.
✿

3) Action representation and reward shaping: Experiments

with different action representations show that constrained and

preferably biased action spaces allow convergence to good

policies (Wheel Velocity - Braking and Steering), however,

more general action spaces (Wheel Velocity and it’s
✿✿

its Clipped

version) can only converge to inferior policies under the same

number of steps (see fig. 6). The proposed orientation based

reward function also leads to as good final performance as

”trivially” rewarding based on the distance traveled, however,

the latter seems to perform better on more general action

representations (because policies using these action spaces and

trained with the Orientation reward doesn’t
✿✿✿✿

does
✿✿✿

not
✿

learn to

move fast).

B. Real-world driving

To measure the quality of the transfer learning process

and the performance of the controller in the real world, we

selected performance metrics that are easily measurable both

in reality and simulation. These were recorded in both domains

in matching experiments and compared against each other. The

geometry of the tracks, the dimensions, and speed of the robot

are simulated accurately enough, to evaluate the robustness of

the policy against all inaccurately and not simulated effects.

Using this method, we tested policies trained in the domain

randomized simulation, but also ones that were trained only

in the ”nominal” simulation. This allows us to evaluate the

transfer learning process and highlight the effects of training

with domain randomization. The real and simulated version of

the test track used in this analysis is shown on fig. 5b and 5c.

https://challenges.duckietown.org/v4/

(a) t = 0[s] Initial po-
sitions

(b) t = 6[s] Catching
up

(c) t = 8[s] (d) t = 24[s]

0 5 10 15 20
Time [s]

0 .0

0 .1

0 .2

0 .3

0 .4

D
is

ta
n
ce

 b
et

w
ee

n

ro
b
o
ts

 [
m

]

25

(e) Approximate distance between the vehicles.

Fig. 7. Sequence of robot positions in a collision avoidance experiment with a policy trained using the modified Orientation reward. After t = 6[s] the
controlled robot follows the vehicle in front of it from a short, but safe distance until the end of the episode. (Approximate distance is calculated as the
distance between the center points of the robots minus the length of a robot.)

During real evaluations, generally, we experienced that

under ideal circumstances (no distracting objects outside the

roads and good lighting conditions) the policy trained in

the ”nominal” simulation is able to drive reasonably well.

However, training with domain randomization leads to more

reliable robust performance in the real world.

Table III show the quantitative results of this evaluation.

The two policies seem to perform equally well if comparing

them based on their performance in the simulation. However,

metrics recorded in the real environment show that the policy

trained with domain randomization performs almost as well as

in the simulation, while the other policy performs noticeably

worse. The lower Distance traveled ego-lane metric of the

domain randomized policy is because the vehicle tends to

drift to the left lane in sharp turns but returns to the right-lane

afterward, while the nominal policy usually made more serious

mistakes. Note that in these experiments the Orientation based

reward and the Steering action representation were used, as

this configuration learns to control the robot in the least

amount of steps and training time.

An online video demonstrates the performance of our

trained agent: https://youtu.be/kz7YWEmg1Is

✿✿

An
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿

limitation
✿✿

of
✿✿✿✿

our
✿✿✿✿✿✿✿

method
✿✿

is
✿✿✿✿

that
✿✿✿✿✿✿

during
✿✿✿

real

✿✿✿✿✿✿✿✿✿✿

evaluations,
✿✿

we
✿✿✿✿

had
✿✿

to
✿✿✿✿✿✿✿✿

decrease
✿✿✿

the
✿✿✿✿✿

speed
✿✿

of
✿✿✿✿

the
✿✿✿✿

robot
✿✿✿

to
✿✿✿

half

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿

value.
✿✿✿✿

The
✿✿✿✿✿✿

policy
✿✿✿✿✿✿✿✿✿✿

evaluations
✿✿✿

are
✿✿✿✿✿✿✿✿

executed

✿✿

on
✿✿

a
✿✿✿

PC
✿✿✿✿✿✿✿✿✿

connected
✿✿

to
✿✿✿

the
✿✿✿✿✿

robot
✿✿✿

via
✿✿✿✿✿✿✿✿

wireless
✿✿✿✿✿

LAN;
✿✿✿✿✿✿✿✿

therefore,

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

actions
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

transmitted
✿✿✿✿✿✿✿

between
✿✿✿

the

✿✿✿

two
✿✿✿✿✿✿✿

devices
✿✿

at
✿✿✿✿✿

every
✿✿✿✿

step.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

introduces
✿✿✿✿✿✿

delays
✿✿

in
✿✿✿✿

the
✿✿✿✿

order

✿✿

of
✿✿✿✿✿✿

10-100
✿✿✿✿

ms,
✿✿✿✿✿✿

which
✿✿✿✿✿

makes
✿✿✿✿

the
✿✿✿✿✿✿

control
✿✿✿✿✿

loop
✿✿✿✿✿✿✿

unstable
✿✿

if
✿✿✿

the

✿✿✿✿

robot
✿✿

is
✿✿✿✿✿✿✿

moving
✿✿

at
✿✿✿✿

full
✿✿✿✿✿✿

speed.
✿✿✿✿✿✿✿✿

However,
✿✿

at
✿✿✿✿

half
✿✿✿✿✿✿

speed,
✿✿✿✿✿

stable

✿✿✿✿✿✿✿✿

operation
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

achieved.
✿

✿✿✿

We
✿✿✿✿✿✿

noticed
✿✿✿✿

that
✿✿✿✿✿✿

models
✿✿✿✿✿✿

trained
✿✿✿✿

with
✿✿✿✿✿✿

motion
✿✿✿✿

blur
✿✿✿✿

and
✿✿✿✿✿

longer

✿✿✿

step
✿✿✿✿✿

times
✿✿✿

for
✿✿✿

the
✿✿✿

AI
✿✿✿✿✿✿✿

Driving
✿✿✿✿✿✿✿✿

Olympics
✿✿✿✿✿✿✿

perform
✿✿✿✿✿

more
✿✿✿✿✿✿

reliably

✿✿

in
✿✿✿

the
✿✿✿✿

real
✿✿✿✿✿

world,
✿✿✿✿✿✿✿✿✿

regardless
✿✿✿

of
✿✿✿✿✿

using
✿✿✿✿✿✿✿

domain
✿✿✿✿✿✿✿✿✿✿✿✿

randomization.

✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

retraining
✿✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿

agents

✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

times
✿

is
✿✿✿✿✿✿✿

needed
✿✿

to
✿✿✿✿✿

firmly
✿✿✿✿✿✿✿

support
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

presumptions.

C. Collision avoidance

Fig 7 demonstrates the learned collision avoidance behavior.

In the first few seconds of the simulation, the robot controlled

by the reinforcement learning policy accelerates to full speed.

Then, as it approaches the slower, non-learning robot, it

TABLE IV
EVALUATION RESULTS OF POLICIES TRAINED FOR COLLISION AVOIDANCE

WITH DIFFERENT REWARD FUNCTIONS

Mean metrics over 15 episodes Distance Orientation

traveled +rcoll

Survival time (max. 60) [s] ↑ 46 52

Distance traveled both lanes [m] ↑ 22.5 22.9

Distance traveled ego-lane [m] ↑ 22.7 23.1

Lateral deviation [m·s] ↓ 1.9 1.6

Orientation deviation [rad·s] ↓ 6.3 5.8

reduces it’s
✿✿

its
✿

speed and maintains approximately a constant

distance from the vehicle ahead (see fig 7e).
✿✿✿✿

From
✿✿✿

the
✿✿✿✿✿✿

simple,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

fully-convolutional
✿✿✿✿✿✿✿✿

network
✿✿

of
✿✿✿

our
✿✿✿✿✿✿

policy,
✿✿✿✿✿✿✿✿

learning,
✿✿✿✿✿✿✿✿

planning,

✿✿✿

and
✿✿✿✿✿✿✿✿

executing
✿✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿

behavior,
✿✿✿✿

such
✿✿✿

as
✿✿✿✿✿✿✿✿✿

overtaking,

✿✿✿

can
✿✿✿

not
✿✿✿

be
✿✿✿✿✿✿✿✿

expected.
✿

Table IV shows that training with both reward functions

lead to functional lane-following behavior, however the non-

maximal Survival time values indicate that neither of the

policies are capable of performing lane following reliably with

the presence of an obstacle robot for 60 seconds. All metrics

in Table IV indicate that the modified Orientation reward

leads better lane following metrics, than the simpler Distance

traveled reward. It should be noted, that these metrics were

mainly selected to evaluate the lane following capabilities of

an agent, more in-depth analysis of collision avoidance with

a vehicle upfront call for more specific metrics.

An online video demonstrates the performance of our

trained agent: https://youtu.be/8GqAUvTY1po

D. Salient object maps

Visualizing which parts of the input image contribute the

most to a particular output (action) is important, because, it

https://youtu.be/kz7YWEmg1Is
https://youtu.be/8GqAUvTY1po

provides some explanation of the network’s inner workings.

Fig. 1 shows salient object maps in different scenarios, gener-

ated using the method proposed in [18]. All of these images

indicate high activations on lane markings, which is expected.

IV. CONCLUSIONS

This work presented a solution to the problem of complex,

vision-based lane following in the Duckietown environment

using reinforcement learning to train an end-to-end steering

policy capable of simulation to real transfer learning. We

found that the training is sensitive to problem formulation,

for example to the representation of actions. We showed

that by using domain randomization, a moderately detailed

and accurate simulation is sufficient for training end-to-end

lane following agents that operate in a real environment.

The performance of these agents was evaluated by comparing

some basic metrics in matching real and simulated scenarios.

Agents were also successfully trained to perform collision

avoidance in addition to lane following. Finally, salient object

visualization was used to give an illustrative explanation of the

inner workings of the policies, in both the real and simulated

domains.

ACKNOWLEDGMENT

We would like to show our gratitude to professor Bálint

Gyires-Tóth (BME, Dept. of Telecommunications and Media

Informatics) for his assistance and comments on the progress

of our research.

The research reported in this paper and carried out at

the Budapest University of Technology and Economics was

supported by Continental Automotive Hungary Ltd. and the

“TKP2020, Institutional Excellence Program” of the National

Research Development and Innovation Office in the field of

Artificial Intelligence (BME IE-MI-SC TKP2020).

REFERENCES

[1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
pp. 1928–1937, 2016.

[2] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” in 2018

IEEE International Conference on Robotics and Automation (ICRA),
pp. 2070–2075, 2018.

[3] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. Allen, V. Lam,
A. Bewley, and A. Shah, “Learning to drive in a day,” in 2019 Interna-

tional Conference on Robotics and Automation (ICRA), pp. 8248–8254,
2019.

[4] W. Shi, S. Song, Z. Wang, and G. Huang, “Self-supervised discovering
of causal features: Towards interpretable reinforcement learning,” arXiv

e-prints arXiv:2003.07069, 2020.

[5] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy,
T. Sun, Y. Tao, B. Townsend, E. Calleja, S. Muralidhara, and D. Karup-
pasamy, “DeepRacer: Educational Autonomous Racing Platform for
Experimentation with Sim2Real Reinforcement Learning,” arXiv e-

prints arXiv:1911.01562, Nov. 2019.

[6] M. Szemenyei and P. Reizinger, “Attention-based curiosity in multi-
agent reinforcement learning environments,” in International Conference

on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO),
pp. 176–181, IEEE, 2019.

[7]
✿

P.
✿✿✿✿✿✿

Almási,
✿✿✿

R.
✿✿✿✿

Moni
✿

,
✿✿✿

and
✿✿✿

B.
✿✿✿✿✿✿✿✿✿

Gyires-Tóth,
✿✿✿✿✿✿✿

“Robust
✿✿✿✿✿✿✿✿✿✿

reinforcement

✿✿✿✿✿✿✿✿✿

learning-based
✿✿✿✿✿✿✿✿✿

autonomous
✿✿✿✿✿

driving
✿✿✿✿

agent
✿✿

for
✿✿✿✿✿✿✿

simulation
✿✿✿

and
✿✿✿

real
✿✿✿✿✿

world,”

✿

in
✿✿✿✿

2020
✿✿✿✿✿✿✿✿✿

International
✿✿✿✿

Joint
✿✿✿✿✿✿✿✿

Conference
✿✿

on
✿✿✿✿✿

Neural
✿✿✿✿✿✿✿

Networks
✿✿✿✿✿✿

(IJCNN)
✿

,

✿✿

pp.
✿✿✿

1–8,
✿✿✿✿✿

2020.
[8]

✿

V.
✿✿✿✿✿

Mnih,
✿✿✿

K.
✿✿✿✿✿✿✿✿✿✿

Kavukcuoglu,
✿✿✿

D.
✿✿✿✿✿

Silver,
✿✿✿

A.
✿✿✿✿✿✿

Graves,
✿✿

I.
✿✿✿✿✿✿✿✿✿

Antonoglou,

✿✿

D.
✿✿✿✿✿✿

Wierstra,
✿✿✿

and
✿✿

M.
✿✿✿✿✿✿✿✿

Riedmiller,
✿✿✿✿✿✿

“Playing
✿✿✿

atari
✿✿✿✿

with
✿✿✿

deep
✿✿✿✿✿✿✿✿✿✿

reinforcement

✿✿✿✿✿✿

learning.”
✿

[9]
✿

J.
✿✿✿✿✿✿✿✿

Schulman,
✿✿

F.
✿✿✿✿✿✿

Wolski,
✿✿

P.
✿✿✿✿✿✿✿

Dhariwal,
✿✿

A.
✿✿✿✿✿✿✿

Radford,
✿✿✿

and
✿✿✿

O.
✿✿✿✿✿✿

Klimov,

✿✿✿✿✿✿✿

“Proximal
✿✿✿✿✿✿

policy
✿✿✿✿✿✿✿✿✿✿

optimization
✿✿✿✿✿✿✿✿✿✿

algorithms,”
✿✿✿✿✿✿

arXiv
✿✿✿✿✿✿✿

preprint
✿

,

✿✿

vol.
✿✿✿✿✿✿✿✿✿✿✿✿

abs/1707.06347,
✿✿✿✿

2017.
[10]

✿✿

A.
✿✿✿✿✿

Kalapos
✿

,
✿

C.
✿✿✿

Gór
✿

,
✿✿

R.
✿✿✿

Moni
✿

,
✿✿✿

and
✿

I.
✿✿✿✿✿✿

Harmati,
✿✿✿✿✿✿✿✿

“Sim-to-real
✿✿✿✿✿✿✿✿✿✿

reinforcement

✿✿✿✿✿

learning
✿✿✿✿✿✿

applied
✿✿✿

to
✿✿✿✿✿✿✿✿

end-to-end
✿✿✿✿✿✿

vehicle
✿✿✿✿✿✿✿

control,”
✿✿✿

in
✿✿✿✿

2020
✿✿✿✿✿

23rd

✿✿✿✿✿✿✿✿

International
✿✿✿✿✿✿✿✿✿

Symposium
✿✿

on
✿✿✿✿✿✿✿✿✿✿

Measurement
✿✿✿

and
✿✿✿✿✿✿

Control
✿✿

in
✿✿✿✿✿✿✿

Robotics

✿✿✿✿✿✿

(ISMCR),
✿✿✿

pp.
✿✿✿

1–6,
✿✿✿✿

2020.
✿

[11] J. Zilly, J. Tani, B. Considine, B. Mehta, A. F. Daniele, M. Diaz,
G. Bernasconi, C. Ruch, J. Hakenberg, F. Golemo, A. K. Bowser, M. R.
Walter, R. Hristov, S. Mallya, E. Frazzoli, A. Censi, and L. Paull, “The
ai driving olympics at neurips 2018,” arXiv preprint arXiv:1903.02503,
2019.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint,
vol. abs/1707.06347, 2017.
R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[13] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proceedings of the International Conference on Learning Represen-

tations (ICLR), 2016.
[14] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,

J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” in International Conference on Machine Learn-

ing, pp. 3053–3062, 2018.
[15] M. Chevalier-Boisvert, F. Golemo, Y. Cao, B. Mehta, and L. Paull,

“Duckietown environments for openai gym,” 2018.
[16] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade

learning environment: An evaluation platform for general agents,” J.

Artif. Intell. Res., vol. 47, pp. 253–279, 2013.
[17]

✿

R.
✿✿✿✿✿

Moni,
✿✿

A.
✿✿✿✿✿✿

Kalapos,
✿✿

A.
✿✿✿✿

Béres,
✿✿✿

M.
✿✿✿

Tim,
✿✿

P.
✿✿✿✿✿

Almási,
✿✿✿

and
✿✿

Z.
✿✿✿✿✿✿

Lőrincz,
✿✿✿

“Pia

✿✿✿✿

project
✿✿✿✿✿✿✿✿✿✿

achievements
✿

at
✿✿✿✿✿

aido5,”
✿✿✿✿✿

2020.
[18] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,

L. D. Jackel, and U. Muller, “Explaining how a deep neural net-
work trained with end-to-end learning steers a car,” arXiv preprint,
vol. abs/1704.07911, 2017.

✿✿✿✿✿✿✿✿✿

APPENDIX

✿✿✿✿✿✿✿

Proximal
✿✿✿✿✿✿

Policy
✿✿✿✿✿✿✿✿✿✿✿

Optimization

✿✿✿

The
✿✿✿✿✿✿✿

pseudo
✿✿✿✿

code
✿✿✿✿

for
✿✿✿✿✿✿✿✿

Proximal
✿✿✿✿✿✿

Policy
✿✿✿✿✿✿✿✿✿✿✿✿

Optimization
✿✿

is
✿✿

as

✿✿✿✿✿✿✿

follows:

Algorithm 1:
✿✿✿✿✿✿✿✿

Algorithm
✿✿✿✿✿✿

PPO,
✿✿✿✿✿✿✿✿✿✿✿

Actor-Critic
✿✿✿✿✿

Style

✿✿✿✿✿

(based
✿✿✿

on
✿✿✿✿✿

[12])

✿✿✿✿✿

Input:
✿✿✿✿✿

initial
✿✿✿✿✿✿

policy,
✿✿✿✿

with
✿✿✿

θ0
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿

and
✿✿✿✿✿

initial

✿✿✿✿

value
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿

estimator
✿✿✿✿

with
✿✿✿

φ0
✿✿✿✿✿✿✿✿✿

parameters
✿

for iteration = 1,2,... do

for actor=1,2,...,N do
Run πθold in the environment for T timesteps

to collect τi trajectory

Compute advantage estimates Â1, . . . , ÂT

based on the current value function
end

Optimize LCLIP (θ) + LKLPEN (θ) wrt. θ, for K
epochs and minibatch size M ≤ NT

Fit the value function estimate by regression on

mean-squared error

θold ← θ, φold ← φ
end

✿✿✿

The
✿✿

β
✿✿✿✿✿✿✿✿

adaptive
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿✿✿✿

metnioned
✿✿✿

in
✿✿✿✿✿✿

section
✿✿✿✿✿

II-A
✿✿

is

✿✿✿✿✿✿

updated
✿✿✿✿✿✿✿✿✿

according
✿✿✿

tot
✿✿

he
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿

rule:
✿

β ←

{
β/2, if d < dtarg/1.5

β × 2, if d > dtarg × 1.5
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(6)

✿✿✿✿✿

where
✿✿✿✿✿

dtarg
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

hyperparameter
✿✿✿✿

and
✿

d
✿✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

KL-divergence

✿✿

of
✿✿✿

the
✿✿✿

old
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

updated
✿✿✿✿✿✿

policy

d = Ê [KL [πθold(·|st), πθ(·|st)]]
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(7)

✿✿

Ât
✿✿✿✿✿✿✿✿✿✿

generalized
✿✿✿✿✿✿✿✿✿

advantage
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿✿

[13] is
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿

as:

Ât =

∞∑

l

(γλ)
l
δVt

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(8)

δVt = rt + γV (st+1)− V (st)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(9)

✿✿✿✿✿

where
✿✿✿✿✿✿

V (st)
✿✿✿✿

and
✿✿✿✿✿✿✿✿

V (st+1)
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

value
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿

estimates,

✿✿✿✿✿✿✿✿

calculated
✿✿✿

by
✿✿✿

the
✿✿✿✿✿

value
✿✿✿✿✿✿✿

network
✿✿

at
✿✿✿✿✿

steps
✿

t
✿✿✿✿

and
✿✿✿✿✿

t+ 1.
✿✿

γ
✿✿

is
✿✿✿

the

✿✿✿✿✿✿✿

discount
✿✿✿✿✿

factor,
✿✿✿✿✿

while
✿✿

λ
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

hyperparameter
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

generalized

✿✿✿✿✿✿✿✿

advantage
✿✿✿✿✿✿✿✿

estimate.
✿

✿✿

To
✿✿✿✿✿✿✿

assure
✿✿✿✿✿✿✿✿✿✿✿✿✿

reproducibility,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

hyperparameters
✿✿✿

of
✿✿✿✿

the

✿✿✿✿✿✿✿✿

algorithm
✿✿✿

are
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿✿✿

Table
✿✿✿

V.

TABLE V

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

HYPERPARAMETERS
✿✿

OF
✿✿✿✿

THE
✿✿✿✿✿✿✿✿✿

ALGORITHM.
✿✿✿

THE
✿✿✿✿✿✿✿✿✿✿

DESCRIPTION
✿✿

OF
✿✿✿✿

SOME

✿✿✿✿✿✿✿✿✿

PARAMETERS
✿✿✿

ARE
✿✿✿✿✿

FROM
✿✿✿

THE
✿✿✿✿✿✿✿✿✿✿✿✿

DOCUMENTATION
✿✿

OF
✿✿✿✿✿✿✿✿✿

RLLIB [14]

✿✿✿✿✿✿✿✿

Description
✿✿✿✿

Value
✿

✿✿✿✿✿

Number
✿✿

of
✿✿✿✿✿✿

parallel
✿✿✿✿✿✿✿✿✿

environments
✿✿✿✿✿✿

N = 16

✿✿✿✿✿✿

Learning
✿✿✿

rate
✿✿✿✿✿✿✿✿✿✿

α = 5× 10−5

✿

✿✿✿✿✿✿

Discount
✿✿✿✿

factor
✿✿✿

for
✿✿✿✿

return
✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿

γ = 0.99
✿

✿

λ
✿✿✿✿✿✿✿

parameter
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿

generalised
✿✿✿✿✿✿✿

advantage
✿✿✿✿✿✿

estimate
✿✿✿✿✿✿

λ = 0.95
✿

✿✿✿

PPO
✿✿✿

clip
✿✿✿✿✿✿✿

parameter
✿ ✿✿✿✿✿

ǫ = 0.2

✿✿✿✿✿

Sample
✿✿✿✿

batch
✿✿✿

size
✿ ✿✿✿✿✿✿

T = 256

✿✿✿

SGD
✿✿✿✿✿✿✿

minibatch
✿✿✿

size
✿ ✿✿✿✿✿✿✿

M = 128

✿✿✿✿✿

Number
✿✿

of
✿✿✿✿✿

epochs
✿✿✿✿✿✿✿

executed
✿

in
✿✿✿✿

every
✿✿✿✿✿✿

iteration
✿ ✿✿✿✿✿✿

K = 30
✿

✿✿✿✿

Target
✿✿✿✿✿✿✿✿✿✿

KL-divergence
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿

β
✿ ✿✿✿✿✿✿✿✿✿

dtarg = 0.01

	Introduction
	Methods
	Reinforcement learning algorithm
	Policy architecture
	Action representations
	Wheel Velocity
	Wheel Velocity - Positive Only
	Wheel Velocity - Braking
	Steering

	Reward shaping
	Distance traveled
	Orientation

	Simulation to reality transfer
	Collision avoidance
	Evaluation
	Survival time (tsurvive) [s]
	Distance traveled in ego-lane (sego) [m]
	Distance traveled both lanes (sboth) [m]
	Lateral deviation (dd) [ms]
	Orientation deviation (d) [rads]
	Time outside ego-lane (tout) [s]

	Methods/Tweaks/Tricks to improve results at the AI Driving Olympics

	Results
	Simulation
	Comparing against baselines
	Comparing against other solutions at the AI Driving Olympics
	Action representation and reward shaping

	Real-world driving
	Collision avoidance
	Salient object maps

	Conclusions
	References

