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ABSTRACT
The paper presents a new e-textile- based system, named SWEET Shirt, for the remote monitoring of biomedical signals remote monitoring. The system includes a textile sensing shirt, an electronic unit for data transmission, a custom-made Android application for real- time signal visualizsation and a software desktop for advanced digital signal processing. The device allows for the acquisition of electrocardiographic, biceps electromyographic and trunk acceleration signals. The Ssensors, electrodes, and bus structures are all integrated within the textile garment, without any discomfort for users. A wide-ranging set of algorithms for signal processing werehave been also developed for to be used within by the system, allowing clinicians to rapidly obtain have a complete and schematic overview of a patient’s clinical status. The Aaim of this work iwas to present the design and development of the device and to provide a validation analysis of the electrocardiographic measurement and digital processing. The Rresults showdemonstrate that the information contained in the signals recorded by the novel systems areis comparable to with that obtained via by a standard medical device commonly used in clinical environments. Similarly encouraging results awere obtained in the comparison of the variables derived from the signal processing.
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Introduction
In the recent years, wearable technologies have aroused a great deal of are arousing a significant growth of interest, which that is expected to further continue thanks to the rapid improvements in of technology. The involvement of big companies, such as Apple orand Google, has fostered the focus of research activities in this field with the aim of to developing and diffusdistributinge wearable products ready for various several applications. IDTechEx (www.idtechex.com) described picted tthe wearable technology sector as a market with great opportunities in terms of expansion, one that is  and expected to reach 51.6 billion USD by 2022 with a compound annual growth rate of 15.5%. In fact, Bbillions of wearable electronic products are already being sold each year today, covering various different sectors of the market, including military and defensce, space exploration, health and wellness, fashion and entertainment.
Healthcare remains one of the most interesting markets, and the advantages provided by wearable technologies can potentially establish significant cost reductions for healthcare systems. The use of these technologies is increasing in clinical environments, : with hHolter systems are used for electrocardiographic (ECG) or long-term blood pressure long-term monitoring [1]-[2];, wearable integrated systems are currently used in polysomnographic monitoring [3], ; inertial measurement unit (IMU)-based systems used (are attached on the patient’s skin) to recognizse and evaluate activity [4] or to assess postural and gait analysis [5]-[6],; and a variety of other technologies more other arebeing used and introduced. Furthermore, Wwearable devices for health monitoring can be easily used by the patient also in the  domestic environment and, when they are integrated within a complete communication chain, they allow for smart remote monitoring with great benefits for both caregivers and patient himselfs. 
Starting from the 1990s, the process of the miniaturizsation of electronic components has allowed for to start thinking about tconsidering the realizsation of portable devices [7]. Today, the size of electronic devices scale has shifted from the a micro-  to the a nano- scale dimension, which has  allowed for ing the realizsation of minimally invasive monitoring devices that can be used by the patient in their daily activities. The focus has therefore shifted moved toward the concept of electronic textiles (e-textiles) or smart textiles. The term e-textile refers to a textile substrate that incorporates electronic elements that provide it with giving it certain capabilities for sensing (biometric or external), communication (usually wireless), power transmission, and interconnection technologyies while, maintaining the ‘wearable’ capabilities much like any other garment. 
The Aadvances in e-textile technologies have led to the development of comfortable wearable and comfortable garments directly integrated in internet of things (IoT) networks. Many applications have been developed exploiting this background in the field of remote monitoring, with the aim of purpose to ensuring e and increasing the e patient’s comfort, quality of life and safety. Nevertheless, almost all the attendant the totality of these projects remain withlives in the research field and are is not intended for to entry into flow in the commercial market. Here, Tthe main barriers include are represented by the regulatory issues related to garding patient safety, privacy, and data management [8], -[9], and s well as by the need ofor f a certain degree of reliability in terms of for device performances.
A detailed review of about the wearable systems for health monitoring introduced up to 2010 is provided in [10], with a dedicated section on textile-based devices. The field of ECG signal monitoring is one of the fields the most covered by e-textile applications. Pani et al. (2018) provided a complete survey on textile- electrode technologies for ECG monitoring [11], with . In the work, all the examined prototypes are exclusively used in the scientific research field with the aim of investigating the feasibility of this form of such type of biosignal monitoring. A number of the prototypes Part of them are used as stand-alone devices to record ECG signals in a clinical environment, rather than as part of being notan integrated in a tele-monitoring system [12]-[13]. Meanwhile, Oother works have presented remote tele-monitoring systems focused on collecting ECG signals and other important interesting biosignals, such as those related to electromyography (EMG) [14], breathing [15]-[17], accelerometryaccelerometery [12], [18], and galvanic skin response [13], and others. The Ssystems presented in [13] also provide tools for off-line digital signal processing, gathering the principal parameters assessed from signals, including like heart rate, blood pressure, respiratory rate, and activity classification. . 
To our knowledge, Hexoskin (https://www.hexoskin.com/) is one of the leading e-textile based remote monitoring products that is currently  nowadays commercially available. This product allows for the collection of ECG and accelerometric signals, as well as for heart and respiratory rates monitoring, heart rate variability analysis and activity intensity assessment. Here, Tthe attendant hardware is distributed along with compatible mobile apps for real- time signals visualizsation, and with specific a software used for basic off-line data processing.
In this manuscript, the aim is  we want to present our prototypal system, which is based on an e-textile sensing shirt with the capacity able to collect ECG, EMG and accelerometric signals. The sensing hardware uses Bluetooth Llow Eenergy (BLE) technology to transmit data to a connected smartphone, enabling real- time visualizsation. In Eexploiting the internet network, the relevant data can be are shared on a dedicated server, where they can be accessed and downloaded only by authorizsed healthcare professionals. Raw signals can subsequently thereafter be processed using a custom- made MatlabMATLAB desktop graphical user interface (GUI) to assess a wide-ranging set of synthetic parameters. The overall Our aim is to provide a complete system for healthcare remote monitoring, based on a textile device. Unlike many of the referenced applications, the proposed system allows for the simultaneous acquisition of ECG, EMG and acceleration signals, with  and ttheir digital processing producing an extremely very  large set of synthetic parameters that which completelycomprehensively reflects the patient’s clinical state. The innovative tool is represented by the custom-made platform that which gathers a set of advanced signal- processing algorithms, collecting all the possible information from the signals. Healthcare professionals can access and manage the information in a practical way, with the possibility of to directly contacting the patient through the mobile application, in the case of dangerous clinical conditions.[image: ]
[bookmark: _Ref48241280]Figure 1. - Systems architecture: 1) wearable sensing device, 2) electronic unit, 3) SWEET App, 4) cloud, 5) SWEET Lab.



The details of the prototype’s design and development are provided given in the first subsection of the following section. Meanwhile, We also provide a validation analysis of the system, was also undertaken by performing comparative assessments with a standard device commonly used in clinical environments. In this work, the  we focus is on ECG monitoring, providing validation analysis for the raw signals collected via by the prototype and for the processed data flowing from the digital signal processing. The rules followed in the validation analysis are described in the second subsection of Section 2, while the achieved results are are presented in Ssection 3, with the validation results presented in section 4. In Ssection 45, we discuss the results, outlining the listing advantages, limitationss and perspectives of the proposed technology. Finally, in the concluding section, the major findings are summarizsed.
materials and methods
The main Aaim of this work iwas to present the novel wearable device, SWEET Shirt, for remote health monitoring, and to validate its performances in terms of the acquisition and analysis of electrocardiographic activity. In this section, we describe present in detail the units that makinge up the novel system and the materials and methods used to perform the validation analysis.
The SWEET Shirt
The SWEET Shirt is a wearable sensing device that which allows for the acquisition of electrocardiographic, biceps electromyographic and trunk acceleration signals. It can be integrated within a complete system for remote health caringe purposes, as illustrated by in the schematic diagram shown in Figure 1. The remote monitoring system includes also an e-textile- based sensing sock for gait and postural assessments, as described in [19].
The wearable sensor unit allows for the bio-signals acquisition when connected to the analogue front-end located in the electronic unit. This unit also contains a microcontroller and allows for data transmission through an integrated Bluetooth Low Energy (BLE) module. A custom-made Android mobile application was has been developed to receive and visualizse real-time signals on a smartphone, and to subsequently upload data on a dedicated web server afterwards. This server presents is a restricted area that is exclusively accessible (following after prior authentication), exclusively by authorizsed and appointed healthcare professionals, who can download, analyse and process the data using the custom-made MatlabMATLAB desktop software. 
In the following sections, the functional modules of the system are individually presented.
2.2. Wearable sensing unit	Comment by Proofed: It is advised not to divide the subsections into further subsections, and the whole paper has thus been edited accordingly.  
The wearable sensing unit is comprised made of a commercial elastic t-shirt in which e-textile electrodes are integrated. A knit conductive fabric, with a resistance of less than 0.03 ohm per cm in any direction across the textile, hwaas been used to produce realize the electrodes. This fabric from (Adafruit Inc. (www.adafruit.com – product ID: 1167) is plated with real silver, which gives it highly conductive properties. Two 4-by- × 2- cm electrodes were have been integrated within the garment as sensing elements for electrocardiography processes, with two 2 -by-× 2- cm electrodes have been placed on each shirt sleeve for electromyography acquisition and a 2 ×-by- 2- cm electrode has been integrated within the upper part of the chest as a ground electrode for all the biosignals. A conductive ribbon (5 mm in widthe; ) from Adafruit Inc. (product ID: 1244) was then has been used to connect the electrodes to the output connectors of the wearable unit, represented by snap buttons placed in a pocket on the chest of the shirt. The conductive ribbon is made of woven conductive stainless-steel fibres, with a resistance of less than 0.1 ohm per cm. Conductive traces sewedn onto the shirt were have been covered by a non-conductive fabric to avoid contact with the skin. In Figure 2 shows a schematic e design of the wearable sensing unit, with and the complete unit and with itsthe main details are shown.
2.3. Electronic Uunit
The electronic unit is a compact module containing all the electric and electronic elements to that allow for the acquisition, digitalizsation, and wireless transmission of the signals.
We decided to develop a custom-made analogue front-end for the ECG and EMG measurement, in view of order to opportunelysuitably dealing with face the higher impedance caused by the fabric electrodes. The analogue front-end for ECG measurement is comprises made of 4four principal stages: an the instrumentational amplifier INA 118 from Texas Instruments, a high-pass passive filter with a cut-off frequency of 0.05 Hz, an isolation stage designed with an OpAmp LM358 in voltage follower configuration, and a low-pass active filter with a cut-off frequency of 40 Hz. The first filter is a first order high-pass CR passive filter, while the last stage is represented by a first- order active filter comprising made of an OpAmp LM324 in non-inverting configuration with a RC feedback.
[bookmark: _Hlk47950083]In terms of For the EMG analogue front-end, three 3 principal stages were have been designed, with . Tthe first two stages are similar to those used for e ones of the ECG analogue front-end, but with the high-pass cut-off frequency is set to 15 Hz. The last stage is a precision rectifier circuit with the integration of a low-pass filter. The rectifier circuit comprises is made of an OpAmp LM324, two2 diodes and a resistor on the feedback connection. This form of configuration is also known as super-diode configuration. Meanwhile, Aa capacitor was has been added in parallel to the resistor to ensure make this stage acts as a first- order low-pass filter. The various components were have been chosen to set the filter cut-off frequency at 30 Hz. The introduction of this rectifying stage iwas important needed as we are interested in the EMG envelope signal for to performing the subsequent processing operations. UsuallyGenerally, an EMG signal is sampled and then rectified in the digital domain; however, , but we preferred to rectify it in the analogue domain in order to use a lower sampling frequency. The digitalizsation of EMG signals requires a high sampling frequency, around 800-–1,000 Hz, since as the its highest spectral components are at around 400-–500 Hz. In contrastOtherwise, an EMG envelope requires a lower sampling rate since as its main spectral information is are at low frequencies. The use of a lower sampling rate facilitates the real-time transmission of the signal. Moreover, using this configuration, the mobile application can provide the user with show real- time EMG envelope signals to the user, without the use of a processing stage, that would increases the complexity of the system and potentially can introduce delays.[bookmark: _Ref43288072][image: ]
[bookmark: _Ref48318686]Figure 2. – SWEET shirt sensing unit: a) internal view with textile electrodes and connections, b) external view.


The electronic board, FLORA 9-DOF (Adafruit Inc.), which mounts the triaxial inertial module iNEMO LSM9DS0, hwasas been integrated within the electronic unit to acquire accelerometric signals, while .
a LilyPad Simblee™ BLE Bboard (Sparkfun Inc.), was  has been used as the system control unit. This unit It provides the digitalizsation of the ECG and EMG signals, and it is connected to the Flora Aaccelerometer through the serial I2C bus. The LilyPad Simblee board also allows for to sending data via a Bluetooth Low EnergyBLE protocol (BLE, or Bluetooth 4.0), using the Simblee™ Bluetooth® Smart Module integrated on the shield. In fact, BLE technology represents a perfect trade-off between energy consumption, latency, piconet size, and throughput [20]. The choice of using to use BLE technology can also be regarded should be interpreted as a means of method to increaseing the battery life of the device as much as possible. Battery life is a central issue in the development of portable devices and, . Iin this type kind of applications, it is mostly influenced by the data transmission operations. Indeed, BLE is one of the most saving data-saving transmission protocols, while other solutions have been proposed based on reducing the amount of data to be sent, using a compression method that does not degrade the signal quality [21], -[22].
[bookmark: _Hlk47955028]The Ccontrol unit features awere implemented through exmploying an iting the ARM® Cortex M0 microcontroller that can be programmed using the Arduino IDE. The control unit iwas programmed to digitalizse ECG and EMG analogue signals, and to receive digital data from the accelerometer. Here, the ECG signal is digitalizsed with a sample rate of 200 Hz, while the EMG and accelerometric signals are acquired using with a sample period of 15 ms (66.7 Hz). All Ddata are collected in 20-bytes-sized packets and are sent in real- time sent, via BLE, to the smartphone using the SWEET Aapp. The Ppacket transfer rate iwas set to 66.7 Hz, which was experimentally identified as the maximum rate supported by BLE transmission without data loss. Hence, each packet contains one sample from EMG and triaxial acceleration signals, and three successive ECG samples, in accordance with their sampling rates.
[bookmark: _Hlk48294098]Despite the fact that the sampling rates chosen for the ECG and EMG signals awere lower than those usually used, they were in line with respect the time resolution required by our target applications. In ECG digital processing, we are not interested in signal morphology, but we focus on hearth rate analysis, which can be accurately performed done also with a lower sampling rate [23]. With Rregard to ing EMG signalling, the envelope signal was has been extracted in the analogue domain sucho  that it can be safely sampled using with the chosen rate.
All the modules that make ing up the electronic unit are powered by a 1,200 mAh/3.7 V lithium battery, placed on the back of the same unit, which . The electronic unit is enclosed in a 3D-printed plastic case (10cm x × 7.5cm  x  × 2 cm). On the top part of the case, eight 8 snap buttons were integrated to allow for the connection to the wearable sensing unit, in order to thus providinge the input signals for the analogue front ends. In Figure 3 shows the internal electronic board and the complete unit are shown.

[image: ][bookmark: _Ref43373802][bookmark: _Ref43373797]Table I. – HRV time domain variables
Statistical Measures
Variable
Description
SDNN [ms]
(Standard Deviation NN-intervals)
Standard Ddeviation of normal-to-normal intervals (NN).  SDNN reflects all cycles responsible for heart rate variation in time, thus representing the total variability.
SDANN [ms] 
(Standard Deviation Averaged NN-intervals)
Standard Ddeviation of the average NN intervals calculated over 5 minutes. SDNN is therefore a measure of the changes in heart rate due to cycles longer than 5 minutes.
SDNNi [ms]
(SDNN index)
Mean of SDs of NN intervals, calculated over 5 minutes.
RMSSD [ms]
(Root Mean Square of Successive Differences)
Square root of the mean of the squares of the successive differences between adjacent NN intervals.
NN50
Number of pairs of successive NNs that differ by more than 50 ms.
pNN50 [%]
Proportion of NN50 divided by total number of NN intervals.
Geometrical Measures
Variable
Description
HRV Ti
(Triangular index)
Area of the histogram distribution of RR intervals, normalizsed to the maximum value of the histogram.
TINN
Base width of the RR intervals histogram.


Figure 3. SWEET Shirt electronic unit: a) internal electronic unit, b) complete unit, external view.
2.4. The SWEET Aapp[bookmark: _Ref43288082][image: ]
[bookmark: _Ref48318724]Figure 3 – SWEET Shirt ElectronicUnit: a) internal electronic unit, b) complete unit, external view.

The SWEET Aapp is a custom-made application for mobile devices requiring an operating system of Android 6.0 or higher operating system  and BLE technology. The application allows the smartphone to communicate and receive data coming from the electronic unit, via the BLE protocol. When the application is started, it is possible to associate and connect the wearable device, using its media access control (MAC) address. Following this, Then the measurement session can commencestart, with the ddata are transferred from the electronic unit to the mobile device, which allows for signals real- time signal plotting. At the end of the session, the data will be are automatically saved in a '‘.csv'’ file, which is stored locally and can be uploaded at any time to a dedicated web server. In Figure 4 shows the main frames of the app are shown.
2.5. Signal Pprocessing Aalgorithmsa)

Data from the web server can be accessed and downloaded only by authorizsed healthcare professionals. The custom-made MatlabMATLAB GUI software, SWEET Lab, can be used to plot and post- process signals in order to achieve a huge set of synthetic parameters of clinical interest. In this work, we focus on ECG signal measurement and processing validation, and therefore, here,  in this paragraph we will only discuss about ECG signal processing, while althougha number of   algorithms for EMG and acceleration signal processing were have been ddeveloped.[bookmark: _Ref43373848][image: ]
[bookmark: _Ref48318750]Figure 4. – SWEET Aapp main frames: a) login, b) unit connection and c) real- time signal visualizsation.


The first step in ECG signal processing involves provides for the detection of QRS complexes using an Okada algorithm [24], for the assessment of the tachogram and, the discrete series of RR intervals. The subsequent analysis is divided into seven7  frameworks, . Tthe first of which framework relates to gards the analysis of heart rate (HR) analysis, with : the instantaneous HR is assessed as the mean overon 4four  successive beats. From this series, the minimum, the maximum, the medium and the median HRheart rates can be are extracted, and the tachycardia (HR>110 bpm) and bradycardia (HR<60bpm) events subsequently are searched and listed. 
The second framework is dedicated to the heart rate variability (HRV) analysis in terms of the time, frequency and time-–frequency domains. Here, the Bbeats are first classified in terms of normal, ectopic, premature ventricular contraction (PVC) and artifacts basinged on their timing before and then the RR series is edited to exclude any artifacts and any beat- to- beat intervals that are too short or too long. The new RR series is then processed in the time domain to extract the statistical and geometrical measures, as listed in Table I [25].
The HRVHeart rate variability is also assessed in the frequency domain, by analysing how the power spectral density (PSD) is distributed as a function of frequency. The PSD presents three main components in terms of very low frequency (VLF), low frequency (LF) and high frequency (HF). The frequency peaks and , the absolute and the relative power values of each component are computed, along together with the LFHF ratio [26]. Three different methods are provided offered by the software to compute the PSD, namely, the : Welch Periodogram [27], Burg Periodogram [28] and e Lomb-–Scargle Periodogram [29] methods. The same analyses are conducted on the windowed periodogram of the RR series to obtain a time-–frequency domain analysis of the HRVhearth rate variability. 
[bookmark: _Rmr50366085][bookmark: _Rmr50366084]The third framework in the ECG processing relates gardsto  heart rate turbulence (HRT) analysis. This form of analysis HRT presents is a non-invasive method that explainings the response of the heart to ventricular arrythmias [30] and . It is a good predictor of mortality following after acute myocardial infarction [31]. Two numerical parameters are assessed by the software to describe HRT: turbulence onset (TO): to describe the initial acceleration in of heart rate following after a premature ventricular contraction (PVC), and turbulence slope (TS: ) to reflect the subsequent deceleration of the sinus rhythm) [30]. Meanwhile, Tthe fourth framework provides a nonlinear analysis of ECG signals, using four different approaches: sample entropy, detrended fluctuation analysis (DFA), Poincaré poincarè plots and fractal dimension analysis (FDA). Here, Ssample entropy presents is a nonlinear method for to determineing  the complexity of a RR series, which , it is computed in terms of for severalvarious values of k and it is used for the HRV analysis  of HRV [32]. Meanwhile, DFA is used to quantify the fractal properties of brief intervals of the tachogram signal [33], .while Thea Poincaré plot is a plot of RR intervals vers.us the previous RR intervals used to quantify self-similarity. Two numerical parameters are assessed in Poincarè plot analysis: SD2 is (the magnitude of the major axis of the ellipse fitting the data;, and represents the short-term variability) and , while SD1 is (the magnitude of the minor axis of the ellipse;, and represents the long-term variability). Finally, FDA provides the measurement of the fractal dimension of the RR series assessed using a Higuchi algorithm [34]. The Ffractal dimension is a useful indicator in cardiology since as it assumes different values for different types of heart disease [35].
3. VALIDATION ANALYSIS
Here, we This manuscript presents a validation analysis related to concerning SWEET Shirt ECG signal acquisition and processing. In fact, We performed three different type of analysis were conducted , in order to address carry out any possible unconformity in the measurement and/or processing phases managed by the new described prototype. We first compared the R-R intervals identified by the SWEET Shirt with those obtained via found by a reference device. Following thisThen, the similarity between of the ECG signals obtained via the different devices from the devices has beenwas assessed. Finally, a comparative analysis hwaas been carried out to validate a specific subset of parameters derived ing from the SWEET Lab software signal processing.[bookmark: _Ref43383881][image: ]
[bookmark: _Ref48318805]Figure 6. – ECG electrodes configuration used for signal acquisition.

3.1. Experimental Ssetup
A 3three-channel digital Holter recorder (Oxford Medilog FD5) was used as the reference for in measuringthe ECG signal measurement. The device incorporates uses seven electrodes and operatesworks with a sampling rate of 8,000 Hz and , with a resolution of 15.5 bits. A healthy subject, aged 25, was equipped with the clinical hHolter device along with the prototypal wearable device, SWEET Shirt, for the ECG measurement (Figure 6). Here, the Holter’s electrodes were have been placed on the subject’s thorax (as shown in Figure 6 a, -b), in order to avoid any overlapping with the SWEET Shirt Ee-Ttextile electrodes, and to ensure make tthe two ECG waveform were as similar as possible by means of visual analysis. The ECG acquisition time was set to 2 hours. [bookmark: _Ref43385393][image: ]
[bookmark: _Ref48315392]Figure 5. – Average beat waveform from the SWEET sShirt and the cut-off points (red vertical lines) used to isolate single waves.


3.2. Digital processing and analysis
The ECG signals from both measurement units were loaded in the MatlabMATLAB environment for pre-processing and analysis operations, with . Bboth signals were passed through a notch digital filter to remove any 50 Hz interference. The R peaks in the ECG signal from the SWEET Shirt were identified using the Okada algorithm, while those R peaks location in the hHolter ECG awere automatically detected via by its own software and could an be loaded in the MatlabMATLAB environment. The first analysis hwaas been carried out to compare the RR intervals, by means of Passing-–Bablok (PB) regression. To achieve reach interval-to-interval correspondence, six RR values from the Holter series were removed since , as they corresponded to a region of artefacts in the SWEET ECG signal. Following this, Then the comparative analysis hwas been performed using the a matlabMATLAB function for Passing-Bablok regression [36].
The Wwaves for each beat were subsequently isolated, to allow for a beat-to-beat morphology comparison. The cut-off point hwas been  chosen as the midpoint between two subsequent R peaks, in order to cover the complete signal. We choose R peaks as fiducial points since because no significanttive differences were found among the have been pointed out between RR locations in from the first analysis, as can be (seen inthe results section). A set of a  total of set of 6,968 corresponding beats were obtainedresulted for the analysis. The Wwaveforms were then resampled on a normalizised axis, with a common number of samples, in order to allow for correlation analysis among the between corresponding beats. The number of samples was chosen has been chosen to equal to the maximum number of samples found in a non-normalizsed beat. A Rresampling operation allows for to avoiding any  signal distortion in the normalising time axis. We also decided to analyse individually analyse the three principal constituent waves, namely, the : P-wave, the QRS complex and the T-wave. Two cut-off points have beenwere set in the normalizsed time axis to divide the three single waves, : they have which were selected been chosento be as the two stationary points between the three local maxima representing the single waves, as calculated based on the average beat waveform from the SWEET sShirt recording (Figure 5).
The complete beat and the single waveforms were rearranged in eight matrices (four 4 for each device recording), with each column containing the signal corresponding to an occurred beat. Correlation analysis for the between waveforms was has been carried out using the matlabMATLAB function, ‘corr’, which computes the linear correlation between each pair of columns in the input matrices. The diagonal elements of the output matrix hence represent the linear correlations between the corresponding waveforms recorded by the devices under examinationtest. The Matlab fuction ‘corr’ function also returns a matrix of p-values for testing the hypothesis of no correlation vs. against the alternative hypothesis of a non-zero correlation.
We finally compared a subset of parameters derivinged from our software to to those provided offered by the commercial hHolter software, in order to validate our signal processing algorithms. To this end, For these purposes, a further nother 2-hours ECG recording was has been measured using on a 68-year-old pathological volunteer experiencing a pathological disorder (cardiopathic),, with the same experimental setup as used previously showed. The volunteer was a cardiopathic subject, aged 68. The two records were then both windowed in terms of 24 twenty-four 5five-minuteutes segments, which were individually processed, carrying out a set of 24 measures for each record and for each parameter. The ECG signals were also windowed to enlarge the dataset for the comparisonto be compared,, and because five minutes is the recommended duration for short-term ECG analysis [25]. Since hHolter software only provides HRV measures in the time and frequency domains, validation analysis was carried out on a subset of two representative parameters, one for each HRV field, which awere computed by both systems, that is, the : standard deviation of normal-to-normal beats (SDNN) for the time domain, and the ratio between low- and high- frequency spectral power (LF/HF ratio) for the frequency domain. The agreement between the measures was has been assessed using by means of root mean square error (RMSE), Passing-Bablok regression and Bland-–Altman analysis.
4. Results
4.1. RR intervals comparison
The RR series were compared using Passing-Bablok (PB) regression. This method It was first proposed in 1983 as a method for testing the agreement between of two sets of measurements obtained achieved byvia different systems [37], -[38]. Here, the PB regression involved searching es for a linear relationship between the measures from the two systems and the returns slope and offset of the fitting linear model. The systems could an be considered as equivalent if the confidence intervals of slope and offset contain respectivelycontained 1 and 0, respectively. In Table II shows the results of the PB regression for the RR intervals are reported.
4.2. Signal Wwaveform Ccomparison
The ECG waveforms were have been compared using by means of Pearson’s linear correlation analysis.  Figure 7 shows the distribution of Pearson’s correlation coefficients respectively for the complete ECG waveform, the P- wave, the QRS complex and the T- wave.[bookmark: _Ref43912372][bookmark: _Ref43912359][image: ] Figure 7. – Boxplot of Pearson’s correlation coefficient for complete and single ECG waveforms.
[bookmark: _Ref43911407][bookmark: _Ref43914586]Table II – Summary statistics and results of the PB regression analysis for the RR interval series.
Statistics
Mean (StD)
RR intervals from SWEET Shirt [ms]
1032 (77.44)
RR intervals from Holter MEdilog Darwin
1032 (77.41)
Passing – Bablok Regression
Mean
Confidence interval
Slope
1.00
1.00 to 1.00
Offset [ms]
0
0 to 0
[bookmark: _Ref43927909][bookmark: _Ref48244130]Table III - Qualitative assessment of correlation for ECG waveforms.

Quality of Correlation
% of the entire set
High
Moderate
Low
P- wave
5.97***
49.13**
44.90
QRS complex
99.92***
0.04**
0.04
T- wave
98.87***
0.82**
0.31
ECG waveform
98.82***
0.88**
0.30
*** p-value<0.001
**p-value<0.005
[bookmark: _Ref43912820][bookmark: _Ref43916816]Table IV – Main statistics and RMSE assessed for the HRV variables under examinationtest.
Non-Pathological Subject

Holter (meanstd)
Sweet (meanstd)
RMSE
SDNN [ms]
63.2  11.2
63.2  11.2
0.184
LF/HF Ratio [adim]
1.54  0.846
1.53  0.850
0.0561
Pathological Subject

Holter (meanstd)
Sweet (meanstd)
RMSE
SDNN [ms]
20.9  6,15
19.8  5.87
4.41
LF/HF Ratio [adim]
3.64  3,62
2.96  2.92
1.97


High values of correlation were have been pointed outfound for the ECG waveform (mean value ± standard deviation: 0.94 ± 0.07), for QRS complex (0.96 ± 0.04) and T- wave (0.96 ± 0.09), while lower values awere returned in shown bythe P- wave analysis (-−0.19 ± 0.36).
We assessed the quality of the correlation between each couple of beats using the following rules: (i) high correlation if |r|≥0.7, (ii) moderate correlation if 0.3≤|r|<0.7 and (iii) low correlation when |r|<0.3. In Table III shows a summary of the qualitative assessment of the correlation is given, in terms of the percentage of beats, indicating which presents high, moderate or low correlation. 
Almost all ECG beats recorded by the prototypal device exhibited presenta high correlation with the corresponding ent waveforms obtained via bythe standard instrument, with a p-value excluding the hypothesis of null correlation between them. Specifically, In particularthe  QRS complex and T- wave awere the most comparable components, while the P- waves mainly exhibited present moderate or and low correlation values of correlation. 
4.3. Signal processing algorithms validation
The first approach to in the analysis of the parameters generated by the signal processing algorithms involved has been made by assassessing the root mean square errors (RMSE)s among  between the different sets of measures. Table IV shows the values of RMSE values and the principal descriptive statistics of the data sets, which were divided according to by subject.
In the first section part of Table IV, the results from the non-pathological volunteer session are reported. In this case, the RMSE values of RMSE awere extremely very low for both parameters: ~0.3 % of the mean value for the SDNN and ~3.6 % of the mean value for the LF/HF ratio. However, Ddifferent results were obtained with reached forthe pathological subject, with the . Values of RMSE values are greater in terms of both parameters: the SDNN presented presents a RMSE of almost 20 % of the mean value, while the LF/HF ratio RMSE iwas higher than 50 % of the mean.
The analysis of agreement was then further investigated using PB by means of Passing-Bablok regression and Bland-–Altman analysis, .with the attendant  Rresults presented from these assessments are reported in Table V. 
For each of the analysed parameters, the slope and offset from the Passing-Bablok regression are provided, along with their 95 % Cconfidence Iinterval (CI), are given. Across In all providedthe results, the slope values awere close to 1 and their CIs always included values of 1. Similarly, the offset values awere close to 0 in all analyses, with the CIs always including 0 values. In terms of the pathological subject results, the CIs awere larger than the corresponding ent CIs in the non-pathological subject, confirming a better agreement in the measurements derived from the recording involving on the healthy volunteer.
The Results from Bland-–Altman analysis results included some bias, with the its 95 % CI, and the Llimits of Aagreement [LoA]. In terms of the results from the non-pathological volunteer, the bias values of bias awere very close to 0, while and both the bias CIs and LoA exhibited havea low width and , always includinged a 0 value. Meanwhile, iIn terms of the results registration for the pathological subject, the bias values for the SDNN and the LF/HF Rratio awere higher, with a wider LoA including 0. [image: ]
[bookmark: _Ref43916811]Figure 8. - Bland-–Altman plots of the parameters for the non-pathological volunteer. The Rred lines represent the bias, while the blue dashed lines represent the LoA.
[image: ]
[bookmark: _Ref43914485]Figure 9. - Bland-–Altman plots of the parameters for the pathological volunteer. The  rRed lines represent the bias, while the blue dashed lines represent the LoA.


The Bland-–Altman plots are also presented in Figure 8 and Figure 9. While Tthe differences between the methods awere greater larger in terms of both parameters assessed using the on pathological subject, however they exhibited  apresent random distribution, meaning so that no systematic or proportional error could an be confirmed from this analysis. 
5. Discussion
In the first analysis, we compared the RR intervals obtained via revealed from the two systems under examination test by means of Passing-BBablok regression. The Rresults (shown in Table II) confirmed that the systems can be considered as equivalent in terms of the identification of the R peaks along the ECG signal as beat reference points. 
[bookmark: _Hlk47958234]We then compared the signal waveforms by means of Pearson’s correlation analysis. This assessment showeddemonstrated that good agreement existsed between the signals, in particularly in terms of the QRS complex and T- wave, while less ower correspondence hwas found been pointed out in the comparison of the P- waves (see Figure 7 and Table III). Figure 10 shows the averaged ECG waveforms recorded by the two systems. Here, the P- waves awere less visible in the holterHolter signal than in the SWEET Shirt recording. This issue iwas due to caused by the non-standard electrodes placement used for the holterHolter system (see Figure 6), which was chosen to avoid the overlapping with the textile electrodes enclosed in the shirt. Therefore, the lower agreement level with assessed forthe P- waves can be attributed probably addressed to the different electrodes’ placements used, which is all but most compulsory in a simultaneous recording. We can therefore affirm that the prototypal shirt has the capacity is able to clearly record an ECG signal that is comparable with those acquired by commonly used clinical portable devices.[bookmark: _Ref43913043][bookmark: _Ref43916818]Table V. – Results of Passing-Bablok regression and Bland-–Altman Aanalysis for HRV measures.

Passing – Bablok Regression
Bland – Altman Analysis
[bookmark: _Hlk42164618]Non-Pathological Subject

Slope [95 % CI]
Offset [95 % CI]
Bias [95 % CI]
LoA
SDNN
1.00 [0.993 to 1.01]
0 [-0.454 to 0.430]
0.00870 [-0.0713 to 0.0887]
-0.360 to 0.377
LF/HF Ratio
1.00 [0.974 to 1.04]
-0.00740 [-0.0506 to 0.0273]
0.00539 [-0.0189 to 0.0297]
-0.107 to 0.117
Pathological Subject

Slope [95 % CI]
Offset [95 % CI]
Bias [95 % CI]
LoA
SDNN
0.932 [0.597 to 1.39]
0.692 [-8.86 to 7.02]
1.10 [-0.711 to 2.92]
-7.44 to 9.65
LF/HF Ratio
0.919 [0.618 to 1.39]
-0.409 [-1.50 to 0.358]
0.684 [-0.101 to 1.47]
-3.01 to 4.38


Finally, we investigated the performances of the developed software in terms of for signal processing. As shown in Figure 8, Table IV and Table V, excellent very good results were have been achieved in the analysis of the parameters assessed using the on non-pathological subject. The RMSE for both parameters under examination was extremely test is very low, as were well as the biases assessed via the through Bland – Altman analysis. Meanwhile, the Passing – Bablok analysis revealed that there was finds out a regression line very close to the identity line, underlining a strict correspondence between the measurementss from the two devices. However, Llower agreement was found is pointed out in the analysis involving the of pathological subject record. Here, the RMSE and bias values awere higher (Table IV), and the Passing – Bablok CIs confidence intervals awere wider (Table V), albeit that they but still involved contain the values that allowed for to consider concluding that there was some e presence of agreement between the two methods. However, the Bland – Altman plots (see Figure 9) did not exhibit any on’t show a prevalent trend in the distribution of the differences, thus suggesting that no systematic or proportional differences existed rely between the measurement systems. 
Based on these results, we explain the lower agreement level in the parameters related to ofthe pathological subject can be attributed to with the greater higher presence of artefacts in the SWEET Shirt record, which was likely probably due to the caused by a weak orse adherence of the textile electrodes on the patient’s skin or by the higher number of movements made performed bby the subject during the recording session. The ECG signal from the SWEET Shirt iwas clearly visible in 94.66 % of the registration time, while the signal from the holterHolter recorder did oes not present any artefacts. The presence of artefact regions will affects any signal processing results since the artefacts must , as they have to be replaced by a specific number of normative RR intervals to ensure the continuity of the RR series. In this case, the results weare further affected by the fact that even worse as they awere averaged using on a reduced window of 5 minutes.
6. Conclusions
In this paper, Aa new textile-sensor-based wearable device for the measurement and analysis of vital signals was , based on textile sensors, has been developed and presented in this manuscript. The innovative features of the system rely ion the multi-parametric approach in health monitoring and ion the wide-ranging  set of tools available offered for digital signal processing. In the development of the sensing unit, various sensors, electrodes, and bus structures awere all integrated within the textile garment, making it possible for the patient to perform normal daily activities without any discomfort while their clinical status is monitored by a specialist, without any discomfort. The system includes a custom-based app for real- time visualizsation of the acquired signals and a software desktop for off--line plotting and digital signal processing.
In this work, we described the design of the device and we provided a validation analysis related to garding ECG measurement and digital processing. Here, eEncouraging results were have been achieved, indicating that reliable measurements can be obtained using our prototypale wearable device, both in terms of ECG signal acquisition and in further signal processing. In terms of possible As an important improvements, the adherence of the electrodes must be increased to reduce motion artifacts interfering with arousing in the signal, which iis, in our experience, the major issue encountered in this area, one that can our experience and can seriously trongly affect processing operations.[image: ]
[bookmark: _Ref43916652]Figure 10. -  Comparison of averaged ECG beat waveforms from the Holter device (blue) and the sensorizsed shirt (red).
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