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1. INTRODUCTION 

Knowing how electric appliances are used and how different 
appliances contribute to the aggregate total consumption could 
help users to have a better understanding on how the energy is 
consumed, thus leading possibly to a more efficient management 
of their loads. Non-Intrusive Load Monitoring (NILM) is an area 
of computational sustainability research, and it presently 
identifies a set of techniques that can disaggregate the power 
usage into the individual appliances that are functioning and 
identify the consumption of electricity for each of them [1].  

In residential buildings, where it is impractical to monitor 
single appliances, or even groups of appliances, through specific 
meters, NILM techniques are a low-cost and not invasive option 
for electric consumption monitoring, considering a single 
monitoring point where a smart meter is installed.  

Literature reports several papers that applied different 
methods throughout the years to solve this problem. A first 
classification of NILM techniques could be done in supervised 
and unsupervised methods [2]. Supervised methods require 
labelled data of consumption to train the model. Unsupervised 
methods are targeted to extract the information to operate 
directly from the measured aggregate data consumption profiles. 
Due to their better performance, most of the approaches are 
based on supervised algorithms and they require appliance data 
for model training to estimate the loads number, type and power 
by analysing the aggregate consumption signal.  

Solutions based on machine learning range from classic 
supervised machine-learning algorithms (e.g., Support Vector 
Machines, and Artificial Neural Networks) to supervised 
statistical learning methods (e.g., K-Nearest Neighbours and 
Bayes classifiers) and unsupervised method (e.g., Hidden-
Markov Models and its variants). A review of these methods is 
reported in [2]. Recently, Deep Learning (DL) methods were also 
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employed and seem promising for the most challenging problem 
posed by the consumption profiles of multi-state appliances 
[3]-[6].  

The frequency of energy data monitoring drives the use of the 
analysis techniques and the specific tools. Although higher the 
frequency of energy data monitoring frequency higher could be 
the accuracy of the NILM disaggregation algorithms, commercial 
smart meters for homes supply low frequency sampling (less than 
60 Hz) of the electric power quantities. In this field, the majority 
of the research efforts focused on event-based techniques that 
identify significant variations in the power signals as switching 
events of appliances. These events must be classified as a state 
transition related to a specific appliance. For this purpose, 
electric signal characteristics extracted from measurements in 
proximity of the events (i.e., signatures) are used as distinctive 
features, and then labelled with classification procedures. 

In this paper, a monitoring system is proposed using a smart 
meter that supplies low frequency (1 Hz) samples of power 
consumption. The system is able to disaggregate and keep track 
of the power consumption of the devices existing in a typical 
Italian house. The households should follow the proposed 
procedure to customize the system for their homes, choosing the 
appliances of interest and collecting the corresponding 
measurements. The disaggregation algorithm is an improvement 
of the one proposed in [7]-[8]. The load disaggregation is 
performed applying a hybrid approach to power data, i.e. event-
based techniques and pattern recognition techniques for large 
household appliances. Moreover, the procedure of the first set-
up phase has been simplified: the event detection for Type-I and 
Type-II appliances that was performed separately for each device 
is now carried out on the aggregate power signals, strongly 
reducing the user effort.  

In order to validate the method, the procedure is also applied 
to Building-Level fUlly-labeled (BLUED) dataset for Electricity 
Disaggregation [9]. BLUED is a publicly available big dataset 
consisting of real voltage and current measurements for a single-
family residence in the United States, sampled at 12 kHz for a 
whole week. BLUED has been applied as benchmark dataset in 
several recent papers on NILM [5], [10], [11], [12]. However, few 
contributions have been proposed with low frequency samples. 
Among them, [13] and [14] will be considered in this work as 
comparison. 

2. THE HOME ENERGY MANAGEMENT SYSTEM 

The Home Energy Management System (HEMS) is used to 
provide comfortable life for consumers as well as to save energy. 
This can be obtained using a home’s smart meter to monitor the 
electricity consumption of the devices existing in a household 

applying NILM techniques. The HEMS should identify the 
appliances that are active at any time, disaggregate the energy and 
estimate consumptions of the single device. In this work, the 
chosen low-frequency smart meter is a sensor belonging to a pre-
commercial prototype [7] which provides steady-state signatures, 
such as real and reactive power time series. It is important that 
the HEMS set-up is easy to understand and interact with. It 
should have features, like auto-configuration, which make the 
set-up process very easy. The non-intrusive technique, resorting 
to only one smart meter for the household, requires some effort 
in the first set-up phase, but it can be sometimes the only possible 
choice because installing a specific monitoring infrastructure, 
including new devices cables, may result in high implementation 
cost to the user. 

In this work the appliances are categorized into four types 
based on their operation states [15]: 1) Type-I, appliance with 
ON/OFF states (binary states of power); 2) Type-II, finite state 
machines with a finite number of operation states (multiple states 
of power); 3) Type-III, continuously varying devices with 
variable power consumption, as a washing machine and a light 
dimmer (infinite middle states of power); 4) Type-IV, appliances 
that stay ON for days or weeks and with a constant power 
consumption level.  

In case of Type-II, data for all the transitions between 
possible states should be acquired and labelled (manual set-up). 
In case of Type-III devices, data from each cycle are 
characterized by complex patterns. In this paper, a technique to 
deal with such devices is proposed, by considering the washing 
machine as a case study. Figure 1 and Figure 2 show the filtered 
apparent power consumption typical of different models of 
washing machines with different washing cycles. As can been 
noted, the power consumption fluctuates while heating/washing 
or rinsing/drying the laundry. Thus, the events do not 
correspond to simple steps in the power consumption, but 
characteristic complex patterns appear in the power time series. 
As it can be noted, heating water accounts for about 90% of the 
energy needed to run a washer and in both figures the washing 
machine typically has electrical components which turn ON and 
OFF in sequence. 

The proposed technique facilitates the training process by 
pre-populating the training data set with signatures of some 
Type-III devices showing typical patterns (automatic set-up). 

3. THE PROCEDURE 

In the following, the implemented procedure is presented 
showing how the variations of apparent (S), real (P) and reactive 
powers (Q), the oscillation frequencies of the signals and the 
varying patterns of Type-III appliances are used in the training 

 

Figure 1. Apparent power for a washing machine (hot water).  

 

Figure 2. Apparent power for a washing machine (cold water). 
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phase for the creation of the signatures database, whereas during 
a recall phase the appliances are recognized inside an aggregated 
signal. In order to better understand the whole procedure, Figure 
3 shows its flow chart with the main phases of Data collection 
and Extraction of the signatures.  

3.1.  Data collection 

The automatic procedure to collect the aggregate data of 
electric consumption consists of the following two steps, one for 
Type-I and II appliances, one for Type-III appliances. 

In the first step, Type-III appliances (such as washing 
machine or dishwasher) are switched off, whereas Type-I and 
Type-II appliances could regularly work. The user must switch 
on and off Type-I and II devices several times for each event of 
interest. This allows to increase data robustness to the noise, e.g., 
small fluctuations in appliance consumption, electronics 
constantly on, and appliances turning ON/OFF with 
consumption levels too small to be detected.  

Multi-state devices, such as kitchen ovens, stoves, clothes 
dryers, etc., go through several states where heating elements and 
fans can be switched in various combinations. Thus, to collect all 
the events, the user must test all the possible transitions from one 
state to another. For instance, for an electric stove with three 
power levels (states), the user should trigger twelve possible 
switching events, among OFF/ON states. 

In the second step, large Type-III appliances work alone and 
their data of consumption are recorded. 

Note that, for this work, also data from Type-I and Type II 
appliances working alone have been collected, in order to 
combining them and create several synthetic aggregate data series 
to test the system. 

3.2. Extraction of the signatures 

Once the aggregate data have been collected, the database of 
the signatures of each switching event is built. These data are 
normalized with respect to the constant voltage of 230 V in such 
a way that the voltage drops due to the load insertion do not 
influence the result. Moreover, a causal filtering is applied to 
apparent, real, and reactive power signals. In this way, possible 
spikes and outliers can be discarded or smoothed. With such a 
low sampling frequency, fast transients should be removed, since 
they could be sometimes recorded, and other times missed 
during the acquisition. Figure 4 shows the changes in electricity 
consumption due to the switching ON and OFF of a fan before 
and after the filtering. 

For the Type-I and II devices, an edge detector finds the 
switching events in the apparent power data when the absolute 

value of the difference S between two consecutive values is 

larger than 20 VA. The sign of S identifies the start up or the 

shutdown of the appliance. Then, the real P and reactive Q 
power variations in each edge must be determined and candidate 
as one of the signatures of the individual load.  

Within the time interval between two consecutive events 
there is an almost constant power level consumption. In order to 
find a candidate signature of the appliance-switching events, the 
difference between the mean values of the measurements before 
and after each edge of real and reactive power is evaluated. 
Among all the candidate signatures, the k-medoids clustering 
method [16] is applied to partition the set of switching events 
into a set of clusters whose number k depends on the possible 
states of the single appliances and must be set by the user. This 
clustering method is robust to noise and outliers and it chooses 
data points as centers of the clusters. At the end of the clustering 

 

Figure 3. Flow chart of the procedure.  

 

Figure 4. Original and filtered fan power consumption. 
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procedure, these centers will form the signatures associated with 
each transition. 

Note that, as appliances with small power consumptions are 

not interesting from the point of view of energy savings, and 

hardly distinguished, loads with P < 20 W are discarded and 

loads with 20 W < P <50 W are associated to a unique “low 

consumption” cluster. For the same reason, switching events 

lasting less than 5 s are not taken into account. Note that, the 

threshold of 50 W is implemented by default, but it can be 

modified by the user, in case only consumptions greater than a 

predetermined power are of interest.  

At the end of the training phase, all the collected data are 
given as input to the monitoring system; in case of errors in the 
classification, new common clusters are created for those devices 
characterized by close consumptions of real and reactive power.  

For large Type-III appliances, an ad hoc procedure has been 
implemented. For the washing machine, the start and the end of 
the cycle and the motor-spin events are detected. To this aim, the 
peak values of the real power oscillations that identify the heating 
and washing phases are identified. In order to avoid peaks due to 
noise or other events not characterizing this device, maximum 
relevance peak values are selected, i.e., those that drop at least 
30 W on either side before the signal attains a higher value. A 
statistical analysis of the time distance of such peaks shows that 
the typical time distance between the peaks is close to 20 s. Thus, 
the oscillations in the active power signal show a frequency 
greater than or equal to 0.05 Hz.  

Moreover, in order to avoid spurious detections, the pattern 
of the motor spin pattern is isolated. The motor-spin pattern 
shown in Figure 5 is identified in the individual appliance signals. 
The pattern identified in the individual appliance signals is then 
extracted and included in the database of the system.  

3.3. The recall phase 

During the recall phase, first of all, a check is carried out to 
verify if a washing machine is running: as described in section 
3.2, the switching ON (OFF) of the washing machine operation 
is identified when the oscillations, characterized by a frequency 
greater than or equal to 0.05 Hz, start (end).  

When no washing machine cycle is detected, the following 
procedure is applied. When an edge in the aggregated signal is 

detected, the corresponding point in the P-Q plane is 

evaluated. Then, a nearest neighbour search in the P-Q plane 
is performed, and the event is classified and associated to the 
appliance event with the nearest signature vector.  

Moreover, a check on the sign of Q is considered as further 
information, in addition to the cluster center distance, to identify 
the proper cluster in order to increase the discrimination 
capabilities. See as an example the signatures of the hairdryer and 

stove in Figure 6, where the signatures are very close but the 
former, unlike the latter, is characterized by zero reactive power.  

If no association is performed, the event is labelled as 
unidentified. 

The detections of events of Type-I and II appliances switched 
ON and OFF during a washing machine cycle become quite 
challenging with such a low frequency and many false switching 
could be triggered directly applying the described procedure. 
Thus, if the washing machine is running in its heating phase, the 
lower envelope of Q is extracted. Since the washing-machine Q 
lower envelope during the heating phases is equal to zero, the 
presence of the intervals of not-null constant values indicates the 
switching of an appliance. In this case a threshold of 100 var is 
considered. When an edge is detected in a flat-top interval of the 
Q lower envelope, the nearest neighbour search is then applied 

in the P-Q plane in order to associate the event to the 
appliance with the nearest signature vector. This procedure 
allows one to improve the detection in case of reactive loads 
switched ON and OFF during the washing machine heating 
phases. 

Finally, using a similarity search algorithm, it is possible to 
identify, in the aggregate signal, the operating phase that best 
matches with the reference associated to the spin motor 
functioning. This procedure could be applied for other devices 
with characteristic patterns, e.g. microwave ovens, to distinguish 
their operating conditions. 

4. CASE STUDY 

In this section the experiments carried out to verify the 
validity of the methodology proposed are reported. 

The algorithms are implemented in MATLAB. 
Performance have been evaluated both on a custom dataset 

collected by the authors in some Italian houses and on a public 
dataset, BLUED [9], which has already been extensively analysed 
in the literature. 

4.1. Custom dataset 

In order to create our dataset, several domestic consumption 
data have been acquired by installing an energy meter between 
the investigated appliances and the domestic network. 

The implemented acquisition system of the electricity 
consumption data consists of: 

- one EASTRON SDM220 single-phase energy meter 
[17], for residential and industrial applications at a rated 
voltage of 230 V (range 176 V to 276 V) and current of 
10 A (range 0.5 A to 100 A). The accuracy requirements 
of the meter are reported in Table 1;  

 

Figure 5. Motor-spin pattern. 

 

Figure 6. Custom dataset: appliance signatures in ΔP-ΔQ plane. The 
overlapping signatures of hairdryer and stove are highlighted with black 
rectangles [7]. 
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- a PC on which the measurement software and the load 
disaggregation algorithm are implemented; 

- a MODBUS/RS485 Serial interface, including a Serial 
Port Converter Adapter Cable USB-RS485, allowing the 
remote communication between the energy meter and 
the PC. 

The dataset has been created with an acquisition frequency 
equal to 1 Hz that represents the maximum value allowed by the 
used meter. The dataset consists of three parts: individual loads, 
aggregate loads and synthetic aggregate loads. The data were 
acquired in single and aggregate manner during the actual 
operation of the devices or were generated by simulating 
conditions corresponding to actual user behaviour. 

The electricity consumptions of the individual loads reported 
in Table 2 have been acquired by connecting the meter directly 
to the device plugs. The dataset was obtained acquiring multiple 
appliances simultaneously via a multi-socket. In order to increase 
the amount of the data corresponding to aggregate consumption, 
an aggregate synthetic dataset was obtained by combining the 
consumption data of the individual appliances, by summing the 
measurements of P and Q and averaging the values of V. 

4.2. BLUED dataset 

This dataset was built in 2011 by monitoring a whole house 
located in Pennsylvania (US), for 8 days. In US there are three 
electricity feed lines for ordinary houses: two firewires and one 
neutral line. The two firewires have 120 V amplitude of voltage 
and they are named as phase A and phase B. Usually, small 120 
V-rated appliances are connected between one firewire and one 
neutral while larger 240 V-rated appliances such as heaters and 
air conditioners are connected between two firewires. In this 
work only phase A data have been used. The appliances 
connected to this phase are reported in Table 3.  

The BLUED dataset contains high frequency (12 kHz) 
aggregated data of raw current and voltage. During the creation 
of the dataset, every single switching ON/OFF of any appliance 
is recorded and called as an event. In particular, all the changes 
in the state of power consumption higher than 30 W have been 
considered. Every appliance event in the house was then labelled 
and time-stamped, providing the necessary event labels database 
for the evaluation of the proposed procedure. In total, 904 events 
have been registered in the considered phase A.  

In this work, to take into account the technical specifications 
of the pre-commercial smart meter used in the experiments 
discussed in the previous section 4.1, power signals evaluated 
from raw data are down-sampled at 1 Hz. Then, the events 
identified in BLUED, but unknown, and those with duration less 
than or equal to 5 s have been discarded obtaining a final 
database of 662 ground-truth events. 

5. RESULTS 

Figures 6 and 7 show the signatures of custom and BLUED 

databases in the P-Q plane obtained by applying the phase of 
the procedure “Extraction of the signatures”, described in 
section 3.2. In this section the performances of the recall phase 
(event detection and appliances identification) over the two 
datasets are presented.  

5.1. Performance measures  

In binary classification problems (such as the event detection) 
there are only two classes, called Positive (ON or OFF event) 
and Negative (non-event). When a Positive sample is incorrectly 
classified as Negative, it is called a False Negative (FN); when a 
Negative sample is incorrectly classified as a Positive, it is called 

Table 1. Accuracy requirements of EASTRON SDM220 [17]. 

Parameter Accuracy 

Voltage 0.5% of range maximum 

Current 0.5% of nominal 

Power 

Active 

1% of range maximum Reactive 

Apparent 

Energy 
Active 

Class 1 IEC 62053-21 
Class B EN 50470-3 

Reactive 1% of range maximum 

Table 2. List of appliances in the custom dataset. 

Appliance 
Average power 

consumption in W 
Type 

Fridge  180 II 
Kettle  1900 I 
Lamp  40 I 

Notebook  60 I 
Stereo  30 I 
Toaster  500 I 

TV 40 I 
Electric oven 2000 II 

Hairdryer  300-900 II 
Fan  30-40 II 

Induction cooker 400-2500 II 
Microwave oven 1000-1200 II 

Stove 900-1800 II 
Water heater 600-1200 II 

Washing machine 130-1700 III 

Table 3. List of appliances in the BLUED dataset (phase A). 

Appliance 
Average power 

consumption in W 
Type 

Kitchen aid chopper 1500 II 
Fridge 120 II 

Air compressor 1130 I 
Hair dryer 1600 II 

Backyard lights 60 I 
Washroom light 110 I 

Bathroom upstairs lights 65 I 
Bedroom lights 190 I 

 

Figure 7. BLUED dataset (phase A): appliance signatures in ΔP-ΔQ plane. The 
magnification of the part enclosed by the black rectangle shows more in 
detail the signatures with |∆𝑃| < 250 W. 
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a False Positive (FP); when a Positive sample is correctly 
classified as Positive is called a True Positive (TP). 

The 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (Pr) represents what proportion of predicted 
Positives is truly Positive. It is the ratio between the number of 
correctly classified Positives and the total number of samples 
predicted as Positives: 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (1)  

The 𝑅𝑒𝑐𝑎𝑙𝑙 (Re) represents what proportion of actual 
Positives is correctly classified. It is the ratio between the number 
of correctly classified Positives and the total number of Positives 
in the dataset: 

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . (2)  

The 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 combines 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 into a 
single measure. Mathematically it is the harmonic mean of 
Precision and Recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟 ∙ 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
 . (3)  

In a multiclass classification problem (as the appliance 
identification) there are no positive or negative classes, but TP, 
FP and FN and the other performance measures can be 
evaluated for each individual class (each appliance event). 
Summing up the single class measures, the total TP, the total FP 
and the total FN of the model can be obtained; then the global 
metrics of Precision, Recall and F-score can be evaluated. Note 
that in this case, all the global metrics become equal, i.e.  

𝑃𝑟 =  𝑅𝑒 =  𝐹1 − 𝑠𝑐𝑜𝑟𝑒. 

5.2. Performance with custom dataset 

The Recall phase has been tested on aggregate signals 
composed of Type-I and Type-II appliances with and without 
the washing machine. Using the pattern shown in Figure 5, the 
operation phases of the motor-spin are individuated even 
considering washing machines of different brands and with 
different washing programs.  

Figure 8 shows the power demand of a household over a 
14-hour period, between 08:00 and 22:00. As it can be observed, 
the aggregate power demand is generated by the fridge, which 
shows a periodical power consumption behaviour, and other 
appliances. The ON and OFF events are shown as markers at 
the level of +ΔP and -ΔP respectively, whereas the motor spin 
functioning is indicated with red segments.  

The results are very satisfactory, especially regarding 
identification of the activation status of appliances that consume 
more energy, such as the washing machine. As an example, in 
Figure 9 the events detection during a washing machine cycle, is 
shown. Flat-top intervals of the Q lower envelope, denoted by 
the green segments in Figure 9, identify the switching ON/OFF 
of the fridge.  

In order to show the effectiveness of the improvements 
proposed in this paper, in Table 4 the performance for the edge 
detection as reported in [7], are shown. In Table 5 the event 
classifier performance is compared with those reported in [7]. 

As it can be noted, despite the performance index obtained in 
[7] for the synthetically generated aggregate signals was already 
very high, a slight improvement has been achieved. A more 
significant improvement in the performance index can be 
observed on the experimental data after the introduction of the 
described changes.  

The pie charts in Figure 10 compare the estimated 
decomposition results with ground-truth of energy 
consumption. As can be observed, the proposed method is 
capable of disaggregating energy consumption of the appliances 
with good accuracy.  

5.3. Performance with BLUED dataset 

In the BLUED dataset the aggregate signals are composed of 
Type-I and Type-II appliances. The event detector applied to 
BLUED time series identifies 647 events characterized by 

∆𝑆 > 20 var and lasting more than 5 s. Among them, 9 events 

 

Figure 8. Household power demand over a 14-hour period. 

 

Figure 9. Detections of ON/OFF events for the fridge during a washing 
machine cycle. 

Table 4. Performance metrics for the edge detector tested on synthetic and 

experimental custom dataset. 

Test Set 
#  ground-

truth 
events 

TP FP FN Pr Re 
F1-

score 

Synthetic 
Data  

140 139 1 1 0.99 0.99 0.99 

Experimental 
Data  

137 135 2 2 0.99 0.99 0.99 

 

Table 5. Performance metrics for appliances classification tested on synthetic 

and experimental custom dataset. 

Test Set 
# 

detected 
events 

TP FP FN Pr Re 
F1-

score 

Synthetic Data 
[7] 

139 133 6 6 0.96 0.96 0.96 

Synthetic Data  139 133 3 3 0.97 0.97 0.97 

Experimental 
Data [7] 

135 121 14 14 0.90 0.90 0.90 

Experimental 
Data  

135 129 6 6 0.96 0.96 0.96 
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refer to appliances characterized by an active power 
consumption less than 30 W. Since these events are not labeled 
in BLUED, they have been discarded.  

Table 6 and Table 7 report the performance obtained by the 
algorithm for the event detection and the event classification 
respectively. All the performance indexes are very high 
confirming the suitability of the approach to detect sudden state 
changes. In Table 8 the confusion matrix showing per class 
accuracy (in percent) is reported. In the confusion matrix all the 
different lights connected to the phase-A have been grouped into 
a single class. We can observe that the only classification errors 
are for the fridge class which is confused with that of the lights 
and vice versa.  

Literature reports few contributions for NILM algorithms 
applied to BLUED data at the same frequency of 1 Hz [13], [14], 
[18].  

In [13] a panel of different machine learning algorithms is 
applied to appliance classification for a subset of BLUED dataset 
(Air compressor, Basement, Computer, Garage door, Iron, 
Kitchen light, Laptop, LCD Monitor, Monitor, Refrigerator, 
TV). Both Precision and Recall are equal to 79%. 

In [14], clustering in ΔP - ΔQ plane is solved through a 
hierarchical approach executed with some manual supervision. 
The paper reports for phase-A BLUED data an F1-score for the 
event detection and for the appliance classification of about 92% 
and 88% respectively.  

In [18] an event detection algorithm is used to identify the 
time instant when a sudden increase of active power occurs, 
indicating a possible turn-on event, and a convolutional neural 
network (CNN) classifier is applied for event classification. 
Results reported for BLUED are limited to three appliances 
(washing machine, fridge, microwave).  
 

Table 9 reports the calculated Recall (also called True Positive 
rate-TPR) and accuracy metrics for event detection and 
classification respectively for [13], [14] and [18] and also other 
solutions applied to higher frequency data [19]-[21].  

 

Figure 10. Energy disaggregation results. 

Table 6. Performance metrics for the edge detector tested on BLUED dataset. 

Test Set 
#  ground-

truth 
events 

TP FP FN Pr Re 
F1-

score 

Experimental 
Data  

662 638 9 13 0.99 0.96 0.97 

 

Table 7. Performance metrics for appliances classification tested on BLUED 

dataset. 

Test Set 
#  

detected 
events 

TP FP FN Pr Re 
F1-

score 

Experimental 
Data  

638 625 13 13 0.98 0.98 0.98 

 

Table 8. Confusion matrix showing per class accuracy (in percent) for the 
appliances connected to phase-A of BLUED; blue: actual device, grey: 
classified device, green: correct classifications (TP), orange: false positives. 

Class Fridge 
Air 

compressor 
Lights 

Kitchen 
aid 

chopper 

Hair 
dryer 

Fridge 0.99 0 0.01 0 0 
Air 

compressor 
0 1 0 0 0 

Lights 0.05 0 0.95 0 0 
Kitchen aid 

chopper 
0 0 0 1 0 

Hair dryer 0 0 0 0 1 

Table 9. Comparison of event detection and classification performance. 

Reference Method Sampling-rate 
Recall 
(TPR) 

Accuracy 

- Proposed 1 Hz 0.96 0.98 

[13] 
Active machine 

learning strategy 
1 Hz 0.79 0.92 

[14] 
Hierarchical 

approach 
1 Hz 0.89 0.88 

[18] 
First and second 

differences + 
CNN 

1 Hz 0.94 0.98 

[19]  
Finite-precision 

analysis 
4 kHz 0.91 - 

[20] 
Extremely 

Randomized 
Trees 

12 kHz - 0.94 

[21] Hybrid approach 60 Hz 0.94 - 
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It can be seen that the proposed algorithm achieves good 
results while being simple and computationally efficient. In fact, 
despite the low frequency of data analyzed, the approach shows 
competitive performance even when it is compared to other 
more complex methodologies applied to high-sampling-rate 
signals, from 60 Hz to 12 kHz [19]-[21]. 

6. CONCLUSIONS 

In this paper, a monitoring system has been proposed that is 
able to disaggregate and keep track of the power consumption of 
the devices existing in a typical house analysing low frequency 
aggregate data.  

By applying a hybrid approach to power data, i.e. event-based 
techniques and pattern recognition techniques for large 
household appliances, the load disaggregation is performed with 
good performance, even when complex type-III devices, such as 
the washing machine, are working.  

Finally, using the more populated BLUED dataset, we 
showed that the proposed procedure is able to achieve high 
performance in two key tasks in energy disaggregation: 
identifying events from non-events, and identifying which 
appliance is associated with a specified event. 
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