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Abstract – At present, acoustic detection techniques of 

gunshots (gunshot detection) are increasingly being 

used not only for military applications but also for 

civilian purposes. Detection, localization, and 

classification of gunshots employing acoustic detection 

is perspective alternative to visual detection, which is 

commonly used. In certain situations, to detect a source 

of a gunshot, an automatic acoustic detection system 

may be preferable. This paper presents a system for 

acoustic detection, which can detect localize and 

classify acoustic events such as gunshots. Tested 

firearms are 9 mm short gun, 6.35 mm short gun, .22 

short gun, and .22 rifle gun with various subsonic and 

supersonic ammunition. As “false alarms,” sets of 

different impulse acoustic events like door slams, 

breaking glass, etc. have been used. To successfully 

classify the tested acoustic signals, Continuous Wavelet 

and Mel Frequency Transformation methods have 

been used for the signal processing, and the fully two-

layer connected neural network has been implemented. 

The results show that the acoustic detector can be used 

for reliable gunshot detection, localization, and 

classification. 

 I. INTRODUCTION 

Acoustic detection (AD) of gunshots is a present topic 

which can help to detect hazardous and dangerous events 

in public areas. In recent days there is an increase in 

gunshot attacks in public areas such as schools, campuses, 

hospitals, and shopping centers. A fundamental goal of the 

AD is to record acoustic signals around the area of interest 

and to detect, localize and classify it into categories as an 

alert (gunshot) signals and standard, ‘false alert’ signals. 

Sometimes it is challenging to recognize a dangerous event 

from uncertain, inadequate received data by cameras or by 

security staff. The main asset of AD is based on the 

extraction of vital information from the recorded signal 

data and classify it due to the given issue (gunshot, a 

human scream, glass breaking, etc.). Due to this 

classification, AD can assist in Police, Law enforcement to 

better distinguish dangerous events and intervene in the 

going process on time and decrease the further casualties. 

There are several experimental or commercial AD 

systems designed for gunshot events detection and 

localization available on the market [1] - [5]. These 

systems are intended to localize the source of the gunshot. 

The more sophisticated systems can even identify the 

particular firearm type using advanced classification 

methods. A drawback of the sophisticated systems is 

usually very high purchase and operational cost.  

To successfully detect and classify a gunshot, essential 

characteristics of its complex physic have to be 

understood. A comprehensive explanation can be found in 

[6] and [7]. A gunshot is characterized by two phenomena, 

muzzle blast, and, if the bullet travels at supersonic speed, 

shock wave. Muzzle blast is caused by an explosive charge 

hot, high-pressured gases expanding as acoustic energy 

from the center of the barrel. The bullet with the supersonic 

speed generates a shockwave effect, which is propagating 

on the conic fashion behind the bullet trajectory. The 

shockwave is based on the combinations of compression 

and expansion shock. 

These factors can include some valuable information 

that can be used for the detection capability of the 

detection system. Alongside this, the caliber of both bullet 

and barrel, the length of the latter, mechanical action 

caused by a gun itself, or even the chemical properties of 

the propellant cause different effects on the pattern of a 

gunshot. Last but not least, the temperature of the air, air 

humidity, wind speed, environment (e.g., foliage density, 

urban area) and soil characteristics have also impact on the 

resulting gunshot pattern. Considering these phenomena, 

to effectively detect and identify a gunshot, signal 

processing, including adaptive filtering and advanced data 

classification, have to be done [8] – [10]. An example of a 

typical pattern of a subsonic and a supersonic gunshot 

signal is in Figs. 1 and 2. 

 

 

Fig. 1. Signal corresponding to 9 mm subsonic short 

gun shoot. 



 

 

 
In Fig. 2, the shock arrival is not clearly visible due to 

the relatively low speed of the supersonic bullet (Mach 

number M = 1.09) and its proximity to the muzzle blast 

part of the signal. 

In this article, a system for acoustic detection and 

classification is introduced. The system consists of sensor 

units which will be placed around monitored area in 

sufficient numbers and continuously monitor acoustic 

events around the unit and sends the data to the remote unit 

in case of possible gunshots detection. The central unit 

evaluates signals received from multiple sensor units and 

using advanced signal processing and classification 

methods determines the location of gunshot and the 

probable type of used firearm caliber. The localization 

accuracy of the system depends on the density and number 

of sensor units. In comparison with other existing available 

systems (e.g. [3] or [5]), the presented system has a novel 

modular flexible structure. It can be deployed on the 

building or moving object (car, person, animal) while the 

central unit can be installed in a distant protected place.  

In the future, the presented acoustic detector can be used 

in public areas like schools, campuses, shopping centers to 

detect and localize gunshot. 

The paper is organized as follows. In Section II, the 

sensor units, detection algorithm and signal processing are 

introduced and described. In Section III, the experimental 

measurements and results are presented. The conclusion 

and future work directions are stated in section IV. 

 II. METHODS 

The presented system for acoustic detection and 

identification consists of multiple (at least four to estimate 

the correct localization of the event) sensor unit and one 

central unit. Such a topology enables additional analyses 

at the central unit, i.e., triangulation localization of the 

acoustic event position using timestamped data from 

multiple sensor units receiving the acoustic signal related 

to the shooting. Each sensor unit has to cover analog signal 

pre-processing, digitization, simple detection algorithm 

and simple evaluation according to Fig. 3.  

 

 
The stand-alone sensor working on this principle has 

been introduced by the authors in [8]. It works on the 

principle of dividing the recorded signal to the optimal 

number of time windows, which are fed to the median filter 

and the resulting signal from the median filter is then filter 

the analyzed signal from the background noise. Thereafter 

the detection algorithm based on multiple thresholds 

distinguish actual gunshot events from other ‘false 

alarms’. More details about the algorithm can be found in 

[11]. 

Requirements for flexible modular sensor units are even 

more demanding. Since the sensor units can be deployed 

everywhere, it has to be able to send their exact position. 

Moreover, all the sensor units have to by precisely time-

synchronized to get timestamp about the detected event 

properly and send it to the central unit wirelessly. To fulfill 

all these criteria, the sensor unit has been designed 

according to Fig. 4. 

 
Every sensor unit uses a pre-polarized, electret 

condenser microphone that has a flat frequency response 

from 20 Hz to 20 kHz and omnidirectional sensitivity in 

all directions, see Fig. 5 and 6. 

 

 

Fig. 2. Signal corresponding to 9 mm supersonic short 

gun shoot. 
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Fig. 3. Unit function requirements. 
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Fig. 4. Block diagam of the sensor unit. 

 

Fig. 5. Frequency response of the microphone. 



 

 

 
The heart of the acoustic sensor unit is low consumption 

32-bit microprocessor LPC 1837, which processes the 

recorded data from a microphone digitized by a 16-bit 

Analogue-to-Digital Converter (ADC) ADS8866. The 

ADC samples the recorded signal with sampling frequency 

fs = 44 kHz. The peak detector provides an interrupt for the 

microprocessor if an acoustic even is triggered. After the 

interrupt, the data stored in a circular buffer as a 16-bit 

number from the ADC are ready for processing.  

If a trigger from the peak detector occurs, the median 

filter algorithm described above evaluates if there is the 

possibility of a gunshot. If the possible gunshot is detected, 

low consumption GSM chip GL865-QUAD V3 then sends 

the recorded data together with the position and a 

timestamp for further analysis to the remote central unit 

PC. The localization of the sensor unit position and 

synchronization with the other sensor modules secures 

GPS module LEA-6T by adding the precise timestamp to 

the recorded event. For synchronization, NMEA protocol 

[12] is used. The UCT timestamp and exact position of 

each unit are determined. The time accuracy of the LEA-

6T module, for synchronization of all units, is 0.1 ms. The 

whole sensor unit is power supplied from Ucc = +5V. 

The central remote unit process the data using advanced 

signal processing and classification to state if there is a 

gunshot detected and identify the caliber of the firearm or 

if its only ‘false alarm’. The whole sensor unit with a 

testing microphone is in Fig. 7. 

The Continuous Wavelet (CW) and Mel Frequency 

Transformation (MFT) methods are used for the 

processing of received data to obtain features for the 

further classification. MFT algorithm uses band-pass 

filters to get the energy of the signal for each defined band. 

Then the algorithm uses frequency distribution to create 

Mel Frequency Coefficients (MFC). MFC is computed 

using cosine transformation on the logarithm of bank 

energies. In this case, 20 MFC has been used with filter 

bands of 500 Hz to 5 kHz. More details about MFC can be 

found in [13] or [14]. 

 
To limit the influence of an echo on a classification, the 

CW algorithm was considered. Unlike FFT, CW transform 

uses defined waves to create frequency spectrum with 

significant time resolution. Time resolution allows us to 

limit the influence of echo, due to the fact that the echo 

does not usually interact with the beginning of the shot 

sound. As a mother wavelet, Bump wavelet [15] and [16], 

which is defined by (1), has been used, Fig. 8.  

𝛹(𝑠𝜔) = 𝑒
1−(

1
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 1
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𝑠
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𝑠
]  

 (1) 

, where 1[(μ−σ)/s,  (μ+σ)/s] is the indicator function, s is the 

scale, ω is angular frequency, σ is standard deviation and 

µ is mean value. 

 
For classification, a set of gunshots were used as well as 

several false signals similar to a gunshot signal. Each false 

signal has been chosen to be challenging to differentiate 

from real gunshots by a human operator. 

 

 

 

 

Fig. 6. Omnidirectional sensitivity of the microphone. 

 

Fig. 7. The sensor unit for acoustic detection. 

 

Fig. 8. Bump mother wavelet. 



 

 

 III. RESULTS 

To acquire the test data, multiple gunshot measurements 

in different shooting ranges were done. For increasing the 

diversity of gunshots, three different calibers were 

measured. Tested firearms has been 9 mm short gun, 

6.35 mm short gun, .22 short gun, .22 rifle gun. A various 

subsonic and supersonic (up to Mach number of M = 1.1) 

ammunition has been used with the 9 mm short gun. Each 

type of gun has been measured at least 60 times. In total, 

approx. 250 samples corresponding to a gunshot have been 

taken and recorded at least by three sensor units described 

in Section II. For false signals, impulse acoustic events 

similar to gunshots were measured. As an example of a 

false signal, glass breaking, doors slam, handclaps, or 

close bubble wrap popping have been recorded. All the 

tested signals has been recorded by at least three sensor 

units placed in nearby locations. 

To accurately localize the source of the detected gunshot, 

a timestamp of the detected event and exact location of at 

least three acoustic units, which detected the event, have 

to be known. The relationship between the source of the 

gunshot and three sensor units describe equations (2) to (4) 

 

(𝑡1 − 𝑡0) ∗ 𝑐 =  (𝑥 − 𝑎1)2 + (𝑦 − 𝑏1)2 (2) 

(𝑡2 − 𝑡0) ∗ 𝑐 =  (𝑥 − 𝑎2)2 + (𝑦 − 𝑏2)2 (3) 

(𝑡3 − 𝑡0) ∗ 𝑐 =  (𝑥 − 𝑎3)2 + (𝑦 − 𝑏3)2 (4) 

, where t0 is the time where the gunshot has occurred, t1, 

t2 and t3 are the times where the gunshot has been detected 

by unit 1, 2 and 3, (ax, bx) are the coordinates of the 

relevant unit and (x, y) are the coordinates of the gunshot. 

The resulted coordinates are necessary to recalculate the 

Cartesian system. The unit which detects the gunshot first 

(t1) is considered as placed in point (0, 0). The coordinates 

in meters of other units are then calculated by (5). 

𝑑 = 𝑎𝑐𝑜𝑠(𝑠𝑖𝑛(𝛷1) 𝑠𝑖𝑛(𝛷2)) +
+ 𝑐𝑜𝑠(𝛷1) 𝑐𝑜𝑠(𝛷2) 𝑐𝑜𝑠(𝛿𝜆)R 

(5) 

, where Φ1 and Φ2 are the coordinates in meters and δλ 

is the difference of the longitudes and R is the mean Earth 

radius (6378 km). Once the coordinates of the Cartesian 

system are calculated, it is necessary to recalculate it back 

to the latitude and the longitude coordinates. Since the 

distance of one degree of longitude is different at the North 

Pole and the Equator, it is necessary to know the 

relationship between degree and meter at a given latitude 

[17]. This is done by the simplified formula (6) and (7), 

which recalculates meters to one degree of latitude of 

longitude, resulting in inaccuracies in the order of 

centimeters. 

𝑥𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 111123.92 − 559.82 𝑐𝑜𝑠(2𝜆) +
+1.175 𝑐𝑜𝑠(4𝜆) − 0.0023 𝑐𝑜𝑠(6𝜆)  

(6) 

𝑥𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 111412.84 𝑐𝑜𝑠(𝛷) −

−93.5𝑐𝑜𝑠(3𝛷) − 1.175 𝑐𝑜𝑠(5𝛷)  
(7) 

An example of the sent timestamp with the exact 

position in longitude and latitude coordinates and the 

timestamp by the three sensor units (AED 1 – AED 3) and 

calculated source of a detected acoustic event is in Fig. 9. 

 
A custom software packet for the remote unit PC to 

communicate with acoustic units and process sent data has 

been developed as a part of the acoustic detection system 

(Fig. 10).  

 

The application has been developed in C# 

programmable language. The program shows a map with 

the exact location of the chosen acoustic unit and 

precise/synchronized UTC time. In the case of detection, 

the application signalizes the event, displays an exact 

timestamp in UTC and stores the data for further 

processing. The remote central unit then applies the CW 

and MFC algorithms described in Section II to obtain the 

features for classification. The application can also set the 

sampling frequency, parameters for the detection 

algorithm based on the median filter described in 

  

Fig. 9. An example of a message with calculated 

source of an acoustic event sent by the sensor unit. 

 

 

Fig. 10. PC application. 



 

 

Section II [8], and the connection of additional detection 

units. 

For classification, two independent Neural Networks 

(NN) was created. First, NN was designed to classify 

signals based on MFC. Considering the low 

dimensionality of these coefficients, a fully two-layer 

connected neural network has been used. For the CW 

algorithm, a convolution neural network has been used. As 

the spectrum is a two-dimensional matrix, the convolution 

network is significantly better than a fully connected 

system. Convolution network allows finding local features 

in multidimensional, location-dependent input data. 

Spectrogram features are location-dependent, and 

therefore, the convolution network has better results than 

a typical fully connected network. Also, the convolution 

network is typically much smaller in dimension, which 

significantly reducing the computation time. A single 

network, combining both designs, has been implemented 

and used for the classification. The network had two 

inputs, one for the MFC and one for the CW algorithm.  

In this work, classification into ‘false alarms’ and into an 

individual caliber is presented. To train the classifiers in an 

optimal way, the recorded acoustic events data have to be 

divided into the two groups – to training and to validation 

sets. Limitations of overfitting problems, validation and 

training datasets have to be the same size. Recorded ‘false 

alarms’ and gunshots samples have been randomly chosen 

into the training and the validation sets. Each set had 

approx. 140 independent measurements. The experiment 

results for the validation data congaing 141 measured 

‘false alarms’ and gunshots shows Tab. 1. 

 

Table 1. Validation data classification results. 

original/ 

predicted 

false 

alarm 

6.35 mm 

caliber 

9 mm 

caliber 

.22 

caliber 

false alarm 10 0 5 2 

6.35 mm 

caliber 
0 25 6 1 

9 mm 

caliber 
0 0 44 3 

.22 caliber 0 1 0 44 

 

The result shows the validation success rate of 

classifying into the false alarms and the gunshots classes, 

together with an exact caliber of a firearm class caliber, 

was nearly 90%. The system can classify the gunshot from 

the ‘false alarm’ with a 100% success rate but, on the other 

hand, approx. 40% of the false alarms are identified as a 

gunshot. The main reason for this is the limited number of 

signals corresponding to the false alarms. A significant 

number of impulse acoustic events similar to gunshots 

have to be recorded and used for classifier training. 

From the tested measurements took in different shooting 

ranges, with at least three acoustic units to record the 

impulse acoustic even, the presented acoustic detector 

system, operating on the principle of the modified median 

filter, CW and MFC, can successfully detect and classify 

an acoustic event. Used NN classifier can classify an 

individual caliber of a used firearm with a 90 % success 

rate. As a next step, the System for Acoustic Detection will 

be deployed in an environment (residential area) to test it 

in real conditions. 

 IV. CONCLUSION 

The system for acoustic detection, localization, and 

classification of a gun caliber has been presented. The 

system consists of sensor units that continuously monitor 

acoustic events around the unit and the remote unit. Sensor 

units uses a modified median filter algorithm to state if 

there is a possibility of a gunshot. The remote PC unit then 

evaluates the signal by advanced signal processing and 

classification in case of detection. Continuous Wavelet and 

Mel Frequency Transformation methods are used to get 

features for a neural network classifier.  

Gunshots of different calibers and various false alarms 

similar to gunshots have been recorded on a shooting 

ranges to test the system. At least three sensor units 

recorded the acoustic events. 

The system shows the ability to detect the gunshot with 

a 100% accuracy and to correct classify the caliber of a gun 

with approx. 90% accuracy. Considering the limited size 

of training dataset, such results are impressive. However, 

all measurements were measured in a similar environment, 

and a significantly larger dataset in a real environment, 

such urban areas, should be examined for future tests and 

unit improvements. 

In the future, presented Systems for Acoustic Detection 

can be used as a standalone unit placed in schools, 

campuses, shopping centers or other public areas in 

general, to detect and to localize gunshot events and to 

increase the safety for the civil population. 
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